Blog

Page 8246

Nov 4, 2019

Haematopoietic stem cells in perisinusoidal niches are protected from ageing

Posted by in categories: biotech/medical, life extension

With ageing, intrinsic haematopoietic stem cell (HSC) activity decreases, resulting in impaired tissue homeostasis, reduced engraftment following transplantation and increased susceptibility to diseases. However, whether ageing also affects the HSC niche, and thereby impairs its capacity to support HSC function, is still widely debated. Here, by using in-vivo long-term label-retention assays we demonstrate that aged label-retaining HSCs, which are, in old mice, the most quiescent HSC subpopulation with the highest regenerative capacity and cellular polarity, reside predominantly in perisinusoidal niches. Furthermore, we demonstrate that sinusoidal niches are uniquely preserved in shape, morphology and number on ageing. Finally, we show that myeloablative chemotherapy can selectively disrupt aged sinusoidal niches in the long term, which is linked to the lack of recovery of endothelial Jag2 at sinusoids. Overall, our data characterize the functional alterations of the aged HSC niche and unveil that perisinusoidal niches are uniquely preserved and thereby protect HSCs from ageing.

Nov 4, 2019

Determining the shapes of atomic clusters

Posted by in categories: mathematics, nanotechnology, particle physics, robotics/AI

Too large to be classed as molecules, but too small to be bulk solids, atomic clusters can range in size from a few dozen to several hundred atoms. The structures can be used for a diverse range of applications, which requires a detailed knowledge of their shapes. These are easy to describe using mathematics in some cases; while in others, their morphologies are far more irregular. However, current models typically ignore this level of detail; often defining clusters as simple ball-shaped structures.

In research published in The European Physical Journal B, José M. Cabrera-Trujillo and colleagues at the Autonomous University of San Luis Potosí in Mexico propose a new method of identifying the morphologies of atomic clusters. They have now confirmed that the distinctive geometric shapes of some clusters, as well as the irregularity of amorphous structures, can be fully identified mathematically.

The insights gathered by Cabrera-Trujillo’s team could make it easier for researchers to engineer atomic clusters for specific applications. These could include nanoparticles containing two different metals, which are highly effective in catalysing chemical reactions. Their updated methods provided new ways to determine the structural properties of clusters, the ways in which they convert energy to different forms, and the potential forces between atoms. The technique was also able to distinguish the surrounding environments of atoms in the cores of clusters, and on their surfaces. Ultimately, this allowed the researchers to distinguish between distinctive shapes, including icosahedrons, octahedrons, and simple pancakes. They were also able to identify amorphous shapes, which contain no discernible mathematical order.

Nov 4, 2019

Building Solar Panels in Space Might be as Easy as Clicking Print

Posted by in categories: habitats, solar power, space, sustainability

Scientists are testing a new, durable, recyclable and efficient material that could soon power habitats on the Moon.

Nov 4, 2019

Emerald Ash Borer and its Enemy Wasps

Posted by in categories: biological, futurism

A recent study shows that male emerald ash borers infected with a deadly fungus readily transmit the fungus when mating, opening doors for future biological control efforts.

Nov 4, 2019

Scientists develop industrial-strength adhesive which can be unstuck in magnetic field

Posted by in categories: chemistry, mobile phones, sustainability, transportation

Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.

Currently, items like mobile phones, microwaves and car dashboards are assembled using adhesives. It is a quick and relatively cheap way to make products but, due to problems dismantling the various materials for different recycling methods, most of these products will be destined for landfill.

However, Dr. Barnaby Greenland, Lecturer in Medicinal Chemistry, working in conjunction with Stanelco RF Technologies Ltd and Prof Wayne Hayes at the University of Reading, may have found a solution.

Nov 4, 2019

Alien abduction claims examined

Posted by in categories: biotech/medical, sex, space travel

Mark H. says he was abducted by aliens. He clearly remembers awakening one night, unable to move anything but his eyes. He saw flashing lights, heard buzzing sounds, experienced feelings of levitation, and felt electric tingling sensations. Most terrifying were the nonhuman figures he saw by his bed.

Mark believes they were aliens.

Later, he underwent hypnosis to try to recall exactly what had happened to him. Under hypnosis, Mark remembered being whisked through an open window to a large spaceship. He was very frightened when aliens took him into some kind of medical examining room. There he had sex with one of them.

Nov 4, 2019

The men claimed they were abducted

Posted by in categories: biotech/medical, quantum physics

As an experiencer, I believe most claims are real. Whether they were man-made or actual exterrestials or exterrestials that work with us it is still a very common phenomenon. There have been several sightings essentially where even the person’s shoes were the only things left. Looking from common science fiction even it is a possibility that Emelia Airhart was teleported by aliens somewhere in the galaxy and can be referenced from the reports on star trek the tv show. There are several missing people that even today with good forensics that hardly anyone can find and the oddity of it all essentially says that essentially there were no traces left like literally none not even DNA. Looking through police records sure there are cold cases but most are solved but there are several cases that even the highest technologies of forensics have not solved. There are several cold cases all around the globe that were not ordinary ones they were, in fact, alien signs. But eventually, with quantum radar we could scan the entire universe to eventually find traces and digitize them finding a sorta batman style way of like forensics but you would need massive hardware but eventually, you could find them or anything in time. If they found Emelia Airhart they will find anyone else if these exist on this universe or even the multiverse if they physically exist. Then they would actually prove that aliens do actually exist aswell. Really nothing is impossible only improbable. Believing in aliens is not as far fetched as it seems. Most of their technology is science-based anyway it is just exotic physics.


The site of the 1973 alleged abduction is getting a historical marker.

Nov 4, 2019

This is the episode that talks about Emelia Earhart’s disappearance

Posted by in category: entertainment

“The 37’s” is the first episode of the second season, and seventeenth episode overall, of the American science fiction television series Star Trek: Voyager. Due to differing release schedules, it was also released as the final episode of the first season in other countries. [5][6] The episode origina…

Nov 4, 2019

It From Bit — Entropic Gravity For Pedestrians

Posted by in categories: cosmology, information science, quantum physics

Two and a half months since Erik Verlinde submitted his entropic gravity paper, and all of physics and cosmology has turned into entropy. Well, I am exaggerating a bit, and perhaps more than just a bit. Yet, fact is that within two weeks of Erik’s publication a steady stream of ‘entropic everything’ papers has developed at a rate of close to one paper per day. Gravity, Einstein’s equations, cosmic expansion, dark energy, primordial inflation, dark mass: it’s all entropic. Chaos rules. Entropy is king!

Or is it?

Could it be that an ‘entropic bandwagon’ has started rolling? Is this all not just a fad appealing to scientist tired of string theory? What is this elusive entropic force anyway? Do these folks really believe bits of information attract each other?

Nov 4, 2019

Squeeze leads to stellar-mass black hole collision precision

Posted by in categories: cosmology, quantum physics

Scientists at The Australian National University (ANU) have found a way to better detect all collisions of stellar-mass black holes in the universe.

Stellar-mass black holes are formed by the gravitational collapse of a star. Their collisions are some of the most violent events in the universe, creating or ripples in space-time.

These ripples are miniscule and detected using laser interferometers. Until now, many signals have been drowned out by so-called on the pushing the mirrors of the laser interferometer around—making the measurements fuzzy or imprecise.