Blog

Page 6204

Nov 9, 2020

Induced Pluripotent Stem Cells (iPS)

Posted by in categories: biotech/medical, life extension, neuroscience

IPSC are derived from skin or blood cells that have been reprogrammed back into an embryonic-like pluripotent state that enables the development of an unlimited source of any type of human cell needed for therapeutic purposes. For example, iPSC can be prodded into becoming beta islet cells to treat diabetes, blood cells to create new blood free of cancer cells for a leukemia patient, or neurons to treat neurological disorders.

In late 2007, a BSCRC team of faculty, Drs. Kathrin Plath, William Lowry, Amander Clark, and April Pyle were among the first in the world to create human iPSC. At that time, science had long understood that tissue specific cells, such as skin cells or blood cells, could only create other like cells. With this groundbreaking discovery, iPSC research has quickly become the foundation for a new regenerative medicine.

Using iPSC technology our faculty have reprogrammed skin cells into active motor neurons, egg and sperm precursors, liver cells, bone precursors, and blood cells. In addition, patients with untreatable diseases such as, ALS, Rett Syndrome, Lesch-Nyhan Disease, and Duchenne’s Muscular Dystrophy donate skin cells to BSCRC scientists for iPSC reprogramming research. The generous participation of patients and their families in this research enables BSCRC scientists to study these diseases in the laboratory in the hope of developing new treatment technologies.

Nov 9, 2020

Tracking cancer’s immortality factor

Posted by in categories: biotech/medical, life extension

Canadian scientists have achieved a first in the study of telomerase, an essential enzyme implicated in aging and cancer.

In today’s edition of the prestigious journal Molecular Cell, scientists from Université de Montréal used advanced microscopy techniques to see single molecules of telomerase in living .

A flaw in the replication of chromosomes means that they get shorter with each . If nothing is done to correct this error, replication stops and cells go into a state called senescence, a hallmark of aging. Normally, telomerase adds extra DNA to the ends of chromosomes to prevent this problem, but as we age our bodies produce fewer of them.

Nov 9, 2020

Tasmanian devils ‘adapting to coexist with cancer’

Posted by in category: biotech/medical

Circa 2019


There is hope for the world’s largest carnivorous marsupials whose numbers have been ravaged by disease.

Nov 9, 2020

Cancer cell reprogramming: a promising therapy converting malignancy to benignity

Posted by in categories: biotech/medical, genetics

Circa 2019


In the past decade, remarkable progress has been made in reprogramming terminally differentiated somatic cells and cancer cells into induced pluripotent cells and cancer cells with benign phenotypes. Recent studies have explored various approaches to induce reprogramming from one cell type to another, including lineage-specific transcription factors-, combinatorial small molecules-, microRNAs- and embryonic microenvironment-derived exosome-mediated reprogramming. These reprogramming approaches have been proven to be technically feasible and versatile to enable re-activation of sequestered epigenetic regions, thus driving fate decisions of differentiated cells. One of the significant utilities of cancer cell reprogramming is the therapeutic potential of retrieving normal cell functions from various malignancies. However, there are several major obstacles to overcome in cancer cell reprogramming before clinical translation, including characterization of reprogramming mechanisms, improvement of reprogramming efficiency and safety, and development of delivery methods. Recently, several insights in reprogramming mechanism have been proposed, and determining progress has been achieved to promote reprogramming efficiency and feasibility, allowing it to emerge as a promising therapy against cancer in the near future. This review aims to discuss recent applications in cancer cell reprogramming, with a focus on the clinical significance and limitations of different reprogramming approaches, while summarizing vital roles played by transcription factors, small molecules, microRNAs and exosomes during the reprogramming process.

Nov 9, 2020

Covid vaccine: First ‘milestone’ vaccine offers 90% protection

Posted by in category: biotech/medical

Could it be?


‘Milestone’ vaccine offers 90% Covid protection.

The vaccine is a “significant step” forward for getting life back to normal, but challenges remain.

Nov 9, 2020

Quantum cryptography using qutrits

Posted by in categories: encryption, quantum physics

Circa 2006


Quantum cryptography (QC) is still in a very early stage and there are very few commercial products available. But this doesn’t prevent researchers to look at new solutions. For example, physicists from the University of Wien, Austria, are testing qutrits instead of the more common qubits. These qutrits can simultaneously exist in three basic states — instead of two for the qubits. This means that QC systems based on qutrits will inherently be more secure. But if QC using qubits has been demonstrated over distances exceeding 100 kilometers, the experiments with qutrits are today confined within labs. For more information, read this abstract of a highly technical paper or continue below.

Nov 9, 2020

Are Teleporting Qutrits the Future of Computing?

Posted by in categories: computing, mobile phones, particle physics, quantum physics

Scientists have successfully teleported a three-dimensional quantum state. The international effort between Chinese and Austrian scientists could be crucial for the future of quantum computers.

The researchers, from Austrian Academy of Sciences, the University of Vienna, and University of Science and Technology of China, were able to teleport the quantum state of one photon to another distant state. The three-dimensional transportation is a huge leap forward. Previously, only two-dimensional quantum teleportation of qubits has been possible. By entering a third dimension, the scientists were able to transport a more advanced unit of quantum information known as a “qutrit.”

Continue reading “Are Teleporting Qutrits the Future of Computing?” »

Nov 9, 2020

SpaceX executive says the Starship rocket system could help clean up the 760,000 pieces of space junk in orbit

Posted by in category: satellites

SpaceX’s Starship rocket system could help solve the problem of space junk, according to the company’s president and chief operating officer.

“There’s rocket bodies littering the space environment, and dead satellites,” said Gwynne Shotwell in an online interview with Time Magazine.

Nov 9, 2020

Two new species of marsupials discovered in Australia

Posted by in categories: habitats, sustainability

Australian researchers have identified two new mammals in the Land Down Under — both cousins of the doe-eyed flying marsupials known as greater gliders, according to a report.

A study published in Nature’s Scientific Reports journal found two new distinct and smaller species of gliders in northern and central Australia, outside of the marsupial’s known habitat in the country’s southern end, the Sydney Morning Herald reported.

“Australia’s biodiversity just got a lot richer,” Andrew Krockenberger, a professor at James Cook University and a co-author of the study, told the outlet. “It’s not every day that new mammals are confirmed, let alone two new mammals.”

Nov 9, 2020

Astronauts arrive at launch site for 2nd SpaceX crew flight

Posted by in category: space travel

CAPE CANAVERAL, Fla. (AP) — Four astronauts arrived at Kennedy Space Center on Sunday for SpaceX’s second crew launch, coming up next weekend.

For NASA, it marks the long-awaited start of regular crew rotations at the International Space Station, with private companies providing the lifts. There will be double the number of astronauts as the test flight earlier this year, and their mission will last a full six months.

“Make no mistake: Every flight is a test flight when it comes to space travel. But it’s also true that we need to routinely be able to go to the International Space Station,” NASA Administrator Jim Bridenstine said in welcoming the astronauts to Kennedy.