Quantum teleportation between two microorganisms could be happening in the near future.
Prof. Tongcang Li at Purdue University and Dr. Zhang-gi Yin at Tsinghua University just proposed the first scheme to use electro-mechanical oscillators and superconducting circuits to teleport the internal quantum state (memory) and center-of-mass motion state of a microorganism.
Sound a little complex? Then let’s break it down a bit.
String theory is the leading candidate for a “theory of everything” — and Subir Sachdev is taking the “everything” part literally. In a conversation with Quanta Magazine, Sachdev explains how he’s taking inspiration from the mathematics of string theory to learn more about the behavior of high-temperature superconductors.
In a paper published in the journal Nature, researchers at CERN’s ALPHA experiment have shown – to the most accurate degree yet – that particles of antihydrogen have a neutral electrical charge.
According to the Standard Model, which explains how the basic building blocks of matter interact, all antimatter – such as antihydrogen – should have the exact opposite charge to its matter counterpart. For example, in a hydrogen atom a negatively charged electron combines with a positively charged proton to give a net charge of zero. In contrast, an antihydrogen atom should have a positively charged positron combining with a negatively charged antiproton to give a net charge of zero. The Standard Model also says that during the Big Bang equal amounts of antimatter and matter were created. But today this isn’t the case, there is much less antimatter in the universe than matter.
Since physicists know that hydrogen has a neutral charge, by studying the charge of antihydrogen, they hoped to see something different or surprising, which could help scientists to understand why nature has a preference for matter over antimatter. “It’s a very important question: is the universe neutral? Do all the positive charges and negative charges have exactly the opposite sign and to what level can you determine that?” explains Jeffrey Hangst, the spokesperson for the ALPHA experiment at CERN’s Antiproton Decelerator (AD) and the lead scientist on the study. “For normal matter that’s known very precisely: to about one part in 1021, that’s one and 21 zeros, that’s an enormous number, we really know that well. Now we have the first opportunity to study this with antiatoms, with antihydrogen, and that’s what we’re publishing now. We made the best possible study that we can make with trapped antihydrogen.”
It’s not a fighter jet, it’s a Warthog (A-10), obviously.
Assuming this footage is real, that probably means it’s some kind of experimental ground attack drone. Also, I’ve read that there have been a few warthogs converted into drones themselves, so maybe it’s some sort of drone integration trials or something.
Or it’s aliens.
wink
Excited UFO hunters claim to have spotted fighter jets chasing an ‘alien ship’ — but then deciding not to shoot.
Naturally, the seasoned alien-spotters at UFO Sightings Daily claim this is proof that Earth’s military know not to mess with alien craft.
The incident, at Nova Zagora in Bulgaria, was shared by local site Portal12 — and shows a series of stills captured over the villages of Gaz and Zagortci.
Stanford used modified messenger RNA to extend the telomeres so the whole process if it translates effectively into humans — and the evidence is suggesting it will — would be pretty straightforward especially when you consider the degree of extension which is 1000 nucleotides and the fact that the telomerase which lengthens the telomeres is only active in the body for 48 hours which means there is no significant risk of cancer due to the limited time during which proliferation of the cells could take place.
It’s true that Lobsters defy the normal aging process which in humans increases the risk of heart disease, stroke, cancer, Alzheimer’s and diabetes in humans but not only that they actually become stronger and bigger with age each time they shed their shell whereas humans and other mammals are completely the opposite suffering muscle loss, stiffness and elevated risk of fractures etc. Lobsters just keep growing and can grow to a colossal size over the years there is information on a 95 year old 23 pounder (10.5kg) here http://www.cbsnews.com/news/95-year-old-lobster-featured-at-…estaurant/
Normally a lobster dies because it is eaten by a predator I.e us!, suffers an injury or gets a disease. we know the reason they remain fit and strong and it lies in their use of telomerase to protect their DNA and prevent their telomeres shortening and as a result protecting their cells from dying they also have a vast supply of stem cells which can turn into any into any type body of tissue and this will be one of our main tools for biomedical repairs in the future along with telomere lengthening as explained below because if we can extend our telomeres we will also hold one of the keys to life extension.
Based on current research it is technically possible and highly probable work on telomere lengthening at Stanford university will translate into humans giving us the health benefits currently confined to lobsters and the hydra. The primary concern with the lengthening of telomeres used to lie in the theoretically elevated risk of cancer but this problem does not apply based on the current research which you can see on the Stanford University website here https://med.stanford.edu/news/all-news/2015/01/telomere-exte…cells.html as a researcher in aging I consider this research and some supporting and complementary research which has taken place at Harvard coupled with a additional research relating to a compounds that is related to Rapamycin tends to indicate that we are finally making significant progress in addressing the diseases of aging. Interestingly shortening of telomeres was until recently perceived by many as being a result of aging and not causal but the research at Stanford clearly repudiates this and suggests that Dr Bill Andrews the leading researcher into telomeres was correct all the way along.
In August 2015, astronauts on the International Space Station ate the first vegetables grown in space; earlier this month, they coaxed the first zinnias to bloom.
Though space agricultural technology hasn’t quite reached the level of that seen in The Martian, overcoming the challenges presented by zero-gravity to grow plants was a feat in itself.
Yesterday (Jan. 20), NASA released a video describing the “historic vegetable moment” and explaining the growing process more in-depth. You can watch it here:
Self healing robots — definite big step forward in the broader robotics industry.
Future humanoid robots may end up using University of Texas creation to self-heal.
As cool as the Lost in Space robot was at the time the show aired in the ’60s, nowadays we think of robots as being a little more high-tech. Or even human-like. Think “Data,” the android from Star Trek: The Next Generation.