Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Scientists now know why ovarian cancer spreads so rapidly in the abdomen

Ovarian cancer kills more women than any other gynecological cancer. Most patients receive their diagnosis only after the disease spreads throughout the abdomen. Until now, scientists have never fully understood why this cancer advances so fast.

A new study led by Nagoya University explains why. Published in Science Advances, the study shows that cancer cells recruit help from protective mesothelial cells that normally line the abdominal cavity. Mesothelial cells lead the invasion and cancer cells follow the pathways they create. These hybrid cell clusters resist chemotherapy better than cancer alone.

Researchers examined abdominal fluid from ovarian cancer patients and found something unexpected. Cancer cells do not float alone in the abdominal cavity. Instead, they often grab onto mesothelial cells and form hybrid spheres. About 60% of all cancer spheres contain these recruited mesothelial cells. The cancer cells release a protein called TGF-β1 that transforms the mesothelial cells and causes them to develop spike-like structures that cut through tissue.

ABCA1 protein releases molecular brakes on solid tumor immunotherapy, study finds

In recent years, cancer researchers have made major breakthroughs by using the body’s immune system to fight cancer. One of the most promising approaches, known as immune checkpoint blockade, works by releasing molecular “brakes” on T cells. This allows them to better recognize and attack cancer cells. While these therapies can be very effective for some patients, many solid tumors, including most forms of breast cancer, remain largely unaffected. Cancer Center at Illinois (CCIL) Program Co-leader Erik Nelson and his research group are working to understand why these treatments fail.

Elevated blood concentrations of cholesterol have long been linked to cancer outcomes. In a new study, they found that a protein called ABCA1 is involved in transporting cholesterol out of a type of immune cell called macrophages, and in so-doing shifts them to an “attack cancer” mode.

“Immune based therapies have revolutionized how we can treat cancer, basically taking the brakes off of a type of immune cell called T cells so they can attack cancer,” Nelson said. “While this approach works well for some patients, many so-called solid tumors fail to respond or develop resistance mechanisms.”

DNA marker in malaria mosquitoes may be pivotal in tackling insecticide resistance

A new study has detected a DNA marker in a gene encoding a key enzyme known as cytochrome P450 that helps mosquitoes to break down and survive exposure to pyrethroids, the main insecticides used for treating bed nets. This new finding, published on the bioRxiv preprint server and slated for publication in Science Translational Medicine, will help to better implement insecticide resistance management strategies and contribute to reducing the burden of malaria in sub-Saharan Africa, home to 90% of cases globally.

The work was jointly led by Liverpool School of Tropical Medicine and the Centre for Research in Infectious Diseases (CRID) in Cameroon.

Professor Charles Wondji, Professor of Genetics and Vector Biology at Liverpool School of Tropical Medicine and lead author on the study, said, “Our study designed field-applicable tools to easily track the spread of metabolic resistance in the major malaria mosquito species and assess its impact on control interventions. These important findings can help to maintain the effectiveness of insecticide-based tools such as bed nets, which remain a cornerstone of malaria prevention.”

JWST uncovers rich organic chemistry in a nearby ultra-luminous infrared galaxy

A study led by the Center for Astrobiology (CAB), CSIC-INTA, using modeling techniques developed at the University of Oxford, has uncovered an unprecedented richness of small organic molecules in the deeply obscured nucleus of a nearby galaxy, thanks to observations made with the James Webb Space Telescope (JWST).

The work, published in Nature Astronomy, provides new insights into how complex organic molecules and carbon are processed in some of the most extreme environments in the universe.

The study focuses on IRAS 07251–0248, an ultra-luminous infrared galaxy whose nucleus is hidden behind vast amounts of gas and dust. This material absorbs most of the radiation emitted by the central supermassive black hole, making it extremely difficult to study with conventional telescopes.

Mutation in one Parkinson’s protein eases cellular traffic jams caused by another

A hallmark of Parkinson’s disease is the buildup of Lewy bodies—misfolded clumps of the protein known as alpha-synuclein. Long before Lewy bodies form, alpha-synuclein can interfere with neurons’ ability to transport proteins and other cargo along their axons to the synapses. When present at high levels, alpha-synuclein binds too tightly to structures inside the axon, creating the cellular equivalent of traffic jams. These disruptions may even help set the stage for the later accumulation of Lewy bodies in the brain.

Now, University at Buffalo researchers have identified a way to reduce these traffic jams and restore flow—by altering how alpha-synuclein interacts with another Parkinson’s-related protein known as leucine-rich repeat kinase 2 (LRRK2).

In a study published last month, the researchers increased levels of specific mutant forms of LRRK2 in fruit fly larvae. They found that one mutation had a downstream effect on alpha-synuclein, limiting its ability to bind to cargo and disrupt axonal transport. The research is published in the journal Frontiers in Molecular Neuroscience.

Self-regulating living implant could end daily insulin injections

A pioneering study marks a major step toward eliminating the need for daily insulin injections for people with diabetes. The study was led by Assistant Professor Shady Farah of the Faculty of Chemical Engineering at the Technion—Israel Institute of Technology, in co-correspondence with MIT, and in collaboration with Harvard University, Johns Hopkins University, and the University of Massachusetts. The findings are published in the journal Science Translational Medicine.

The research introduces a living, cell-based implant that can function as an autonomous artificial pancreas, essentially a living drug that is long-term, thanks to a novel crystalline shield-protecting technology. Once implanted, the system operates entirely on its own: it continuously senses blood-glucose levels, produces insulin within the implant itself, and releases the exact amount needed—precisely when it is needed. In effect, the implant becomes a self-regulating, drug-manufacturing organ inside the body, requiring no external pumps, injections, or patient intervention.

One of the study’s most significant breakthroughs addresses the longstanding challenge of immune rejection, which has limited the success of cell-based therapies for decades. The researchers developed engineered therapeutic crystals—called “crystalline shield”—that shield the implant from the immune system, preventing it from being recognized as a foreign object. This protective strategy enables the implant to function reliably and continuously for several years.

A new way to communicate with neurons using focused ultrasound stimulation

I still vividly remember the first time we observed neurons responding not to audible sound, but to concentrated, precisely calibrated ultrasonic pulses. On the screen in front of us, calcium signals from brain cells began to rise and fall in little waves. It was less about forcing the brain to adapt and more about listening to the brain and responding subtly.

Understanding how neurons interact and how neurological conditions like Parkinson’s disease affect this communication has been the focus of my study for many years. Calcium, a small ion that functions as a potent messenger inside cells, is at the center of this communication.

Neurons struggle to survive, connect, and operate correctly when calcium transmission is disrupted. Our team began to wonder if we might safely modify this fundamental signaling function without requiring invasive operations or drugs.

Extreme plasma acceleration in monster shocks offers new explanation for fast radio bursts

In a new study published in Physical Review Letters, scientists have performed the first global simulations of monster shocks—some of the strongest shocks in the universe—revealing how these extreme events in magnetar magnetospheres could be responsible for producing fast radio bursts (FRBs).

Magnetars are young neutron stars with extremely strong magnetic fields, reaching up to 1015 Gauss on their surfaces. These cosmic powerhouses produce prolific X-ray activity and have emerged as candidates for explaining FRBs, mysterious millisecond-duration radio bursts detected from across the cosmos. The connection between magnetars and FRBs was strengthened in 2020 when a simultaneous X-ray and radio burst was observed from the galactic magnetar SGR 1935+2154.

The study explores monster shock formation in realistic magnetospheric geometry and was led by Dominic Bernardi, a graduate student at Washington University in St. Louis.

Quantum Twins simulator unveils 15,000 controllable quantum dots for materials research

Researchers in Australia have unveiled the largest quantum simulation platform built to date, opening a new route to exploring the complex behavior of quantum materials at unprecedented scales.

Reporting in Nature, a team led by Michelle Simmons at the University of New South Wales (UNSW) Sydney has demonstrated a platform they call “Quantum Twins”: a two-dimensional array of around 15,000 individually controllable quantum dots. The researchers say the system could soon be used to simulate a wide range of exotic quantum effects that emerge in large, strongly correlated materials.

As quantum technologies advance, it is becoming increasingly important to understand how advanced quantum materials behave under different conditions.

/* */