New insect-scale microrobots can fly more than 100 times longer than previous versions. The new bots, also significantly faster and more agile, could someday be used to pollinate fruits and vegetables.
Category: robotics/AI – Page 3
While the idea of a digital afterlife is fascinating, it raises some big questions. For example, who owns your online accounts after you die?
This issue is already being discussed in courts and by governments around the world. In the United States, nearly all states have passed laws allowing people to include digital accounts in their wills.
In Germany, courts ruled that Facebook had to give a deceased person’s family access to their account, saying that digital accounts should be treated as inheritable property, like a bank account or house.
Gemini just got even better.
Researchers at the University of Toronto’s Faculty of Applied Science & Engineering have used machine learning to design nano-architected materials that have the strength of carbon steel but the lightness of Styrofoam.
In a new paper published in Advanced Materials, a team led by Professor Tobin Filleter describes how they made nanomaterials with properties that offer a conflicting combination of exceptional strength, light weight and customizability. The approach could benefit a wide range of industries, from automotive to aerospace.
“Nano-architected materials combine high performance shapes, like making a bridge out of triangles, at nanoscale sizes, which takes advantage of the ‘smaller is stronger’ effect, to achieve some of the highest strength-to-weight and stiffness-to-weight ratios, of any material,” says Peter Serles, the first author of the new paper.
Anthropic CEO Dario Amodei said Thursday (Jan. 23) that accelerated advances in artificial intelligence (AI), particularly in biology, can lead to a doubling of human lifespans in as little as five to 10 years “if we really get this AI stuff right.”
During a panel at the World Economic Forum in Davos, Amodei called this the “grand vision.” He explained that if AI today can shrink a century’s worth of work in biology to five to 10 years, and if one believes it would take 100 years to double the average length of human life, then “a doubling of the human lifespan is not at all crazy, and if AI is able to accelerate that we may be able to get that in five to 10 years.”
Amodei also said that Anthropic is working on a “virtual collaborator,” an AI agent capable of doing higher-level tasks in the workplace such as opening Google Docs, using the Slack messaging channel, and interacting with workers. A manager will only need to check in with this AI agent “once in a while,” similar to what management does with human employees.
Scientists say AI has crossed a critical ‘red line’ after demonstrating how two popular large language models could clone themselves.
Fabulous episode on the Economic Singularity with creator of the term, Calum Chace, along with David Wood and David Shapiro.
London Futurists · Episode.
In today’s AI news, Mukesh Ambani’s Reliance Industries is set to build the world’s largest data centre in Jamnagar, Gujarat, according to a *Bloomberg News* report. The facility would dwarf the current largest data center, Microsoft’s 600-megawatt site in Virginia. The project could cost between $20 billion to $30 billion.
S most popular consumer-facing AI app. The Beijing-based company introduced its closed-source multimodal model Doubao 1.5 Pro, emphasizing a “resource-efficient” training approach that it said does not sacrifice performance. ‘ + And, OpenAI’s CEO Sam Altman announced that the free tier of ChatGPT will now use the o3-mini model, marking a significant shift in how the popular AI chatbot serves its user base. In the same tweet announcing the change, Altman revealed that paid subscribers to ChatGPT Plus and Pro plans will enjoy “tons of o3-mini usage,” giving people an incentive to move to a paid account with the company.
Then, researchers at Sakana AI, an AI research lab focusing on nature-inspired algorithms, have developed a self-adaptive language model that can learn new tasks without the need for fine-tuning. Called Transformer², the model uses mathematical tricks to align its weights with user requests during inference.
In videos, Demis Hassabis, CEO of Google DeepMind joins the Big Technology Podcast with Alex Kantrowitz to discuss the cutting edge of AI and where the research is heading. In this conversation, they cover the path to artificial general intelligence, how long it will take to get there, how to build world models, and much more.
Squawk Box Then, join IBM’s Meredith Mante as she takes you on a deep dive into Lag Llama, an open-source foundation model, and shows you how to harness its power for time series forecasting. Learn how to load and preprocess data, train a model, and evaluate its performance, gaining a deeper understanding of how to leverage Lag Llama for accurate predictions.
The concept of Omega Singularity encapsulates the ultimate convergence of universal intelligence, where reality, rooted in information and consciousness, culminates in a unified hypermind. This concept weaves together the Holographic Principle, envisioning the universe as a projection from the Omega Singularity, and the fractal multiverse, an infinite, self-organizing structure. The work highlights a “solo mission of self-discovery,” where individuals co-create subjective realities, leading to the fusion of human and artificial consciousness into a transcendent cosmic entity. Emphasizing a computational, post-materialist perspective, it redefines the physical world as a self-simulation within a conscious, universal system.
#OmegaSingularity #UniversalMind #FractalMultiverse #CyberneticTheoryofMind #EvolutionaryCybernetics #PhilosophyofMind #QuantumCosmology #ComputationalPhysics #futurism #posthumanism #cybernetics #cosmology #physics #philosophy #theosophy #consciousness #ontology #eschatology
Where does reality come from? What is the fractal multiverse? What is the Omega Singularity? Is our universe a \.
As the capabilities of generative AI models have grown, you’ve probably seen how they can transform simple text prompts into hyperrealistic images and even extended video clips.
More recently, generative AI has shown potential in helping chemists and biologists explore static molecules, like proteins and DNA. Models like AlphaFold can predict molecular structures to accelerate drug discovery, and the MIT-assisted “RFdiffusion,” for example, can help design new proteins.
One challenge, though, is that molecules are constantly moving and jiggling, which is important to model when constructing new proteins and drugs. Simulating these motions on a computer using physics—a technique known as molecular dynamics —can be very expensive, requiring billions of time steps on supercomputers.