Blog

Archive for the ‘quantum physics’ category: Page 748

Aug 30, 2016

Black Holes are likely sending quantum messages in the universe

Posted by in categories: cosmology, quantum physics

Spinning black holes are capable of complex quantum information processes encoded in the X-ray photons emitted by the accretion disk.

The black holes sparked the public imagination for almost 100 years now. Their debated presence in the universe has been proven without a doubt by detecting the X-ray radiation coming from the center of the galaxies, a feature of massive black holes. Black holes emit X-ray radiation, light with high energy, due to the extreme gravity in their vicinity. The vast majority if not all of the known black holes were unveiled by detecting the X-ray radiation emitted by the stellar material accreting around black holes.

X-ray photons emitted near rotating black holes not only exposed the existence of these phantom-like astrophysical bodies, but also seem to carry hidden quantum messages.

Continue reading “Black Holes are likely sending quantum messages in the universe” »

Aug 30, 2016

Physicists Force Water Molecules Into a Strange New State of Matter

Posted by in category: quantum physics

Physicists have teased water molecules into a new state—one that has some very peculiar quantum mechanical properties.

For the most part, water on Earth comes in three varieties—solid ice, gaseous vapor, and (everybody’s favorite) liquid form. We’ve all known this since basically forever.

But now physicists, who love throwing monkey-wrenches into things and mucking with our cherished notions of everyday existence, have come up with another doozy—a brand new state of water.

Continue reading “Physicists Force Water Molecules Into a Strange New State of Matter” »

Aug 30, 2016

Scientists Have Figured Out What We Need to Achieve Secure Quantum Teleportation

Posted by in categories: internet, quantum physics

Researchers have demonstrated the requirements for secure quantum teleportation using quantum steering.

An international collaboration of researcher from China, Europe, and Australia have demonstrated the precise requirements needed to secure quantum teleportation, a concept that is essential to the future of a quantum internet that lets information to be transmitted securely.

Continue reading “Scientists Have Figured Out What We Need to Achieve Secure Quantum Teleportation” »

Aug 28, 2016

Physicist finds entanglement instantly gives rise to a wormhole

Posted by in categories: particle physics, quantum physics

Quantum entanglement is one of the more bizarre theories to come out of the study of quantum mechanics — so strange, in fact, that Albert Einstein famously referred to it as “spooky action at a distance.”

Essentially, entanglement involves two particles, each occupying multiple states at once — a condition referred to as superposition. For example, both particles may simultaneously spin clockwise and counterclockwise. But neither has a definite state until one is measured, causing the other particle to instantly assume a corresponding state.

The resulting correlations between the particles are preserved, even if they reside on opposite ends of the universe.

Continue reading “Physicist finds entanglement instantly gives rise to a wormhole” »

Aug 27, 2016

Quantum correlations do not imply instant causation

Posted by in category: quantum physics

A research team led by a Heriot-Watt scientist has shown that the universe is even weirder than had previously been thought.

In 2015 the universe was officially proven to be weird. After many decades of research, a series of experiments showed that distant, entangled objects can seemingly interact with each other through what Albert Einstein famously dismissed as “Spooky action at a distance”.

A new experiment by an international team led by Heriot-Watt’s Dr Alessandro Fedrizzi has now found that the universe is even weirder than that: entangled objects do not cause each other to behave the way they do.

Read more

Aug 27, 2016

How quantum computers will change the world of hacking

Posted by in categories: cybercrime/malcode, encryption, information science, quantum physics

There is a computing revolution coming, although nobody knows exactly when. What are known as “quantum computers” will be substantially more powerful than the devices we use today, capable of performing many types of computation that are impossible on modern machines.

But while faster computers are usually welcome, there are some computing operations that we currently rely on being hard (or slow) to perform.

Specifically, we rely on the fact that there are some codes that computers can’t break – or at least it would take them too long to break to be practical. Encryption algorithms scramble data into a form that renders it unintelligible to anyone that does not possess the necessary decryption key (normally a long string of random numbers).

Continue reading “How quantum computers will change the world of hacking” »

Aug 27, 2016

Is Anything Truly Random or Is There an Underlying Order to Everything?

Posted by in categories: ethics, quantum physics

A discussion that I have had often.


In Beyond Science, Epoch Times explores research and accounts related to phenomena and theories that challenge our current knowledge. We delve into ideas that stimulate the imagination and open up new possibilities. Share your thoughts with us on these sometimes controversial topics in the comments section below.

The Dutch philosopher Baruch Spinoza (1632–1677) wrote in “Ethics I”: “Nothing in Nature is random. … A thing appears random only through the incompleteness of our knowledge.”

Continue reading “Is Anything Truly Random or Is There an Underlying Order to Everything?” »

Aug 26, 2016

World’s Scientists: “Human Consciousness Will Remain a Mystery”

Posted by in categories: bioengineering, computing, mathematics, neuroscience, quantum physics

More insights on human conscientious in relation to its state after we die.

Personally, (this is only my own opinion) I believe much of the human conscientious will remain a mystery even in the living as it relates to the re-creation of the human brain and its thinking and decision making patterns on current technology. Namely because any doctor will tell you that a person’s own decisions (namely emotional decision making/ thinking) can be impacted by a whole multitude of factors beyond logical information such as the brain’s chemical balance, physical illness or even injury, etc. which inherently feeds into conscientious state. In order to try to replicate this model means predominantly development of a machine that is predominantly built with synthetic biology; and even then we will need to evolve this model to finally understand human conscientious more than we do today.

Continue reading “World’s Scientists: ‘Human Consciousness Will Remain a Mystery’” »

Aug 26, 2016

Beyond silicon: We discover the processors of your future tech

Posted by in categories: bioengineering, biological, computing, quantum physics

New updated article on the evolution of the processors of tomorrow.

Personally, I find this article runs short in only focusing on carbon, organics aka plastics, and QC as future replacement. With the ongoing emergence of synthetic biology and what this could mean for processors; I would suggest the author explore further the future of synthetic bio.


From stacked CPUs to organic and quantum processing.

Continue reading “Beyond silicon: We discover the processors of your future tech” »

Aug 26, 2016

Research pair create two-atom molecules that are more than a thousand times bigger than typical diatomic molecules

Posted by in categories: computing, particle physics, quantum physics

Perfecting the macro-molecule.


(Phys.org)—A pair of physicists with the Swiss Federal Institute of Technology in Switzerland has found a way to create very large diatomic molecules, and in so doing, have proved some of the theories about such molecules to be correct. In their paper published in Physical Review Letters, Johannes Deiglmayr and Heiner Saßmannshausen describe their experiments and results and why they believe such molecules may have a future in quantum computing.

Physicists have been interested in the properties of macromolecules for many years because they believe studying them will illuminate the fundamental properties of in general. Prior research has shown that large, two-atom molecules should be possible if they were put into a Rydberg state—in which the outer electron exists in a high quantum state, allowing it to orbit farther than normal from the nucleus—and thus allowing for the creation of molecules thousands of times larger than conventional diatomic molecules such as H2.

Continue reading “Research pair create two-atom molecules that are more than a thousand times bigger than typical diatomic molecules” »