Toggle light / dark theme

Take a listen to this 7-min.


Podcast preview discussing the D-Theory of Time paper and the upcoming eBook release: The nature of time has long been a subject of profound inquiry within both the realms of physics and philosophy. This research paper introduces the “D-Theory of Time,” a novel conceptual framework that seeks to advance our comprehension of temporal mechanics. Departing from traditional paradigms, the D-Theory posits that time is not merely a linear progression of events but a dynamic, multidimensional construct influenced by both physical and cognitive phenomena. By integrating insights from quantum mechanics, relativity, and cognitive science, this theory offers a more holistic understanding of temporal flow and its implications on our perception of reality. Key elements include the exploration of temporal entanglement, the fluidity of past, present, and future, and the interplay between consciousness and temporal experience. This paper aims to elucidate the foundational principles of the D-Theory, provide empirical support through experimental data, and discuss its potential to resolve longstanding paradoxes in the study of time. The D-Theory of Time represents a significant upgrade to our understanding of temporal mechanics, opening new avenues for research and philosophical contemplation.

TEMPORAL MECHANICS: D-Theory as a Critical Upgrade to Our Understanding of the Nature of Time, The Seminal Papers series, by Alex M. Vikoulov, is now available to pre-order as a Kindle eBook on Amazon!

Extremely thin materials consisting of just a few atomic layers promise applications for electronics and quantum technologies. An international team led by TU Dresden has now made remarkable progress with an experiment conducted at Helmholtz-Zentrum Dresden-Rossendorf (HZDR): The experts were able to induce an extremely fast switching process between electrically neutral and charged luminescent particles in an ultra-thin, effectively two-dimensional material.

Deep-learning models are being used in many fields, from health care diagnostics to financial forecasting. However, these models are so computationally intensive that they require the use of powerful cloud-based servers.

The authors of the theoretical work say in their paper, Our work addresses the question: ‘Where does the, famously quantized, charge current flow in a Chern insulator?’

This question received considerable attention in the context of the quantum Hall effect, but the progress there has been hampered by the lack of local probes, and no consensus has emerged so far. The fundamental problem is the following: topological protection is excellent at hiding local information (such as the spatial distribution of the current),—a phenomenon that we call topological censorship.

Two recent experiments, which used local probes to determine the spatial current distribution in Chern insulator heterostructures (Bi, Sb)2Te3, have remedied the dearth of experimental data in the case of the anomalous quantum Hall effect. These experiments reached unexpected, albeit very different, conclusions. Here, we provide the theory explaining one of these experiments.

In nature, photosynthesis powers plants and bacteria; within solar panels, photovoltaics transform light into electric energy. These processes are driven by electronic motion and imply charge transfer at the molecular level. The redistribution of electronic density in molecules after they absorb light is an ultrafast phenomenon of great importance involving quantum effects and molecular dynamics.