Toggle light / dark theme

Optical resonator enables a new kind of microscope for ultra-sensitive samples

Everyone who ever took a photo knows the problem: if you want a detailed image, you need a lot of light. In microscopy, however, too much light is often harmful to the sample—for example, when imaging sensitive biological structures or investigating quantum particles. The aim is therefore to gather as much information as possible about the object under observation with a given amount of light.

Scientists Discover Revolutionary New Class of Materials: “Intercrystals”

Scientists at Rutgers University-New Brunswick have identified a new type of material known as intercrystals, which display unusual electronic behaviors that may help shape future technologies.

According to the research team, intercrystals demonstrate electronic characteristics not previously observed, opening the door to progress in areas such as advanced electronic devices, quantum computing.

Quantum computers exploit superposition and entanglement to solve complex problems that are intractable for traditional computers.

Mitsui Works With Quantinuum and QSimulate to Launch Quantum-Integrated Chemistry Platform

Mitsui & Co. has formally launched a new quantum-enabled chemistry platform, QIDO, in collaboration with U.S.-based Quantinuum and QSimulate. The system, designed to accelerate the discovery of new materials and pharmaceuticals, blends classical and quantum computing resources to streamline complex chemical calculation, according to a story in Nikkei and a Quantinuum blog post.

Quantum computers hold promise for modeling chemical reactions beyond the reach of traditional supercomputers. But fully fault-tolerant systems remain years away, leaving companies searching for ways to extract value from today’s noisy, early-stage machines. QIDO, short for Quantum-Integrated Discovery Orchestrator, attempts to bridge that gap.

The platform runs most computations on powerful classical hardware while sending only the most computationally expensive steps — such as the modeling of strongly correlated electrons — to a quantum computer. This hybrid workflow allows companies to perform higher-precision chemical simulations today, without waiting for fully mature quantum systems, Nikkei reports.

/* */