Blog

Archive for the ‘quantum physics’ category: Page 40

Oct 26, 2024

Freeze-frame: U of A researchers develop microscope that can see electrons in motion

Posted by in categories: bioengineering, chemistry, quantum physics

Imagine owning a camera so powerful it can take freeze-frame photographs of a moving electron – an object traveling so fast it could circle the Earth many times in a second. Researchers at the University of Arizona have developed the world’s fastest electron microscope that can do just that.

They believe their work will lead to groundbreaking advancements in physics, chemistry, bioengineering, materials sciences and more.

“When you get the latest version of a smartphone, it comes with a better camera,” said Mohammed Hassan, associate professor of physics and optical sciences. “This transmission electron microscope is like a very powerful camera in the latest version of smartphones; it allows us to take pictures of things we were not able to see before – like electrons. With this microscope, we hope the scientific community can understand the quantum physics behind how an electron behaves and how an electron moves.”

Oct 26, 2024

‘Quantum CD’ could hold up to 1,000 times more data than today’s optical disks

Posted by in category: quantum physics

A new proposal borrows from the principles of quantum mechanics and a technique called “wavelength multiplexing” to hypothesize an ultra-dense new storage format.

Oct 26, 2024

Qubit Readout Mystery Solved

Posted by in categories: computing, quantum physics

Theoretical work provides a long-awaited explanation for why measurements of qubits in superconducting quantum computers are less accurate than expected.

Oct 26, 2024

Scientists gain insight into the material defects that cause errors in quantum computing

Posted by in categories: computing, quantum physics

A team of researchers, led by scientist Lin Zhou of Ames National Laboratory, has made important progress towards understanding the role of surface oxides in improving quantum computing circuits performance. Surface oxides are a primary cause of decoherence, or loss of quantum properties in quantum circuits.

Oct 26, 2024

Researchers use high-performance computing to analyze a quantum photonics experiment

Posted by in categories: computing, quantum physics

For the first time ever, scientists at Paderborn University have used high-performance computing (HPC) at large scales to analyze a quantum photonics experiment. In specific terms, this involved the tomographic reconstruction of experimental data from a quantum detector. This is a device that measures individual photons.

Oct 26, 2024

Zero Resistance Breakthrough: Meet the Quantum Sandwich Powering the Future

Posted by in categories: computing, quantum physics

Researchers have developed a new “sandwich” structure material that exhibits the quantum anomalous Hall effect, enabling electrons to travel with almost no resistance at higher temperatures.

This breakthrough could significantly enhance computing power while dramatically reducing energy consumption. The structure is based on a layered approach with bismuth telluride and manganese bismuth telluride, promising faster and more efficient future electronic devices.

Quantum Material Innovations

Oct 25, 2024

If the Universe Is a Hologram, This Long-Forgotten Math Could Decode It

Posted by in categories: holograms, mathematics, quantum physics, space

A 1930s-era breakthrough is helping physicists understand how quantum threads could weave together into a holographic space-time fabric.

Oct 25, 2024

I’m With Genius: Quantum Physics geek out with brilliant Quantum Queen, Lisa Woerner

Posted by in categories: futurism, quantum physics

Yes, it’s your Stargate partner-in-whine here to talk about my inability to relax and just give in to a fatty future…instead forcing myself on this horrible devices while I learn… today’s weapon of choice is the Smooth Fitness CE 74.4 Elliptical machine of horror…join me!

Oct 24, 2024

How Fast Is Quantum Entanglement? Scientists Clock the Speed of the Instantaneous

Posted by in category: quantum physics

Scientists have developed simulations to investigate the rapid processes of quantum theory, revealing insights into quantum entanglement and its formation.

These findings, which detail how entanglement can be quantified and observed within attoseconds, demonstrate significant advances in understanding the temporal dynamics of quantum events.

Quantum theory and time: unraveling instantaneous effects.

Oct 24, 2024

Superconductivity offers new insights into quantum material MnBi₂Te₄

Posted by in categories: computing, quantum physics

For the first time since the discovery of the material MnBi2Te4 (MBT), researchers at the University of Twente have successfully made it behave like a superconductor. This marks an important step in understanding MBT and is significant for future technologies, such as new methods of information processing and quantum computing.

MBT is a recently discovered material attracting attention due to its unique magnetic and . In their research, the scientists examined how electricity behaves in the material. The findings are published in the journal Communications Materials.

MBT’s topological properties cause electrons to move only along the edges of the material, and in theory, they should only move in a clockwise direction. However, the experiments at Twente demonstrated that under certain conditions, the electrons can rotate both clockwise and counterclockwise.

Page 40 of 862First3738394041424344Last