Blog

Archive for the ‘particle physics’ category: Page 496

Oct 2, 2017

An Earth-Sized Space Shield to Protect Us From Solar Storms Is Less Crazy Than It Sounds

Posted by in categories: economics, particle physics, satellites

Every 100 years or so, our Sun gives off a great big belch that sends an intense wave of charged particles towards Earth. This wasn’t a problem in the past, but our high-tech civilization is now disturbingly vulnerable to these solar storms. A new study quantifies the economic risks posed by these extreme solar storms, while also proposing a super-futuristic solution to the problem: an Earth-sized shield built in outer space.

The term “solar storm” is used to identify the various nasties the Sun can hurl our way, including x-rays, charged particles, and magnetized plasma. In 1859, a series of powerful coronal mass ejections (CMEs) hit our planet head on, disrupting telegraph stations and causing widespread communication outages. If we were to be hit by an equally powerful solar storm today, it would knock out satellites and electrical grids, disrupting global communications, transportation, and supply chains. Total worldwide losses could reach up to $10 trillion, with recovery taking many years.

Read more

Sep 30, 2017

This simple device turns polluted air into power

Posted by in categories: materials, particle physics

Read more

Sep 24, 2017

Particle Accelerators Could Be the Key to Cheaper Solar Panels

Posted by in categories: particle physics, solar power, sustainability

It may seem counterintuitive, but we can use a particle accelerator to make solar panels. Here’s how.

Read more

Sep 11, 2017

If Atoms Are Mostly Empty Space, Why Do Objects Look And Feel Solid?

Posted by in category: particle physics

Chemist John Dalton proposed the theory that all matter and objects are made up of particles called atoms, and this is still accepted by the scientific community, almost two centuries later. Each of these atoms is each made up of an incredibly small nucleus and even smaller electrons, which move around at quite a distance from the centre. If you imagine a table that is a billion times larger, its atoms would be the size of melons. But even so, the nucleus at the centre would still be far too small to see and so would the electrons as they dance around it. So why don’t our fingers just pass through atoms, and why doesn’t light get through the gaps?

Read more

Sep 10, 2017

Coolest science ever headed to the space station

Posted by in categories: particle physics, science

Robotic system will take ultracold atoms and matter wave experiments to new heights.

Read more

Sep 9, 2017

This Quantum Theory Says Time Can Flow Backwards

Posted by in categories: particle physics, quantum physics

Quantum physics throws all the rules of classical physics out the window. In the quantum world, particles can pass through solid walls, be in two places at once, and communicate over an infinite distance. And, if a handful of physicists are right, they can affect the past just as easily as they affect the future. That’s a theory known as quantum retrocausality, and researchers have good reasons to believe it’s true.

Read more

Sep 8, 2017

High-speed quantum memory for photons

Posted by in categories: computing, internet, particle physics, quantum physics

Physicists from the University of Basel have developed a memory that can store photons. These quantum particles travel at the speed of light and are thus suitable for high-speed data transfer. The researchers were able to store them in an atomic vapor and read them out again later without altering their quantum mechanical properties too much. This memory technology is simple and fast and it could find application in a future quantum Internet. The journal Physical Review Letters has published the results.

Even today, fast in telecommunication networks employs short light pulses. Ultra broadband technology uses optical fiber links through which information can be transferred at the speed of light. At the receiver’s end, the transmitted information has to be stored quickly and without errors so that it can be processed further electronically on computers. To avoid transmission errors, each bit of information is encoded in relatively strong light pulses that each contain at least several hundreds of photons.

For several years, researchers all over the world have been working on operating such networks with single photons. Encoding one bit per is not only very efficient, but it also allows for a radically new form of information processing based on the laws of physics. These laws allow a single photon to encode not only the states 0 or 1 of a classic bit, but also to encode a superposition of both states at the same time. Such quantum bits are the basis for that could make unconditionally secure communication and super fast quantum computers possible in the future. The ability to store and retrieve single photons from a quantum memory is a key element for these technologies, which is intensively investigated.

Read more

Sep 8, 2017

How to Store Data on Magnets the Size of a Single Atom

Posted by in categories: computing, particle physics

Research and development is focused on developing new means of data storage that are more dense and so can store greater amounts of data, and do so in a more energy efficient way. Sometimes this involves updating established techniques: recently IBM announced a new magnetic tape technology that can store 25 gigabytes per square inch, a new world record for the 60-year-old technology. While current magnetic or solid-state consumer hard drives are more dense at around 200 gigabytes per square inch, magnetic tapes are still frequently used for data back-up.

However, the cutting edge of data storage research is working at the level of individual atoms and molecules, representing the ultimate limit of technological miniaturization.

Continue reading “How to Store Data on Magnets the Size of a Single Atom” »

Sep 7, 2017

This New Proof of Majorana Fermions Is Going to Be Massive For Quantum Devices

Posted by in categories: computing, particle physics, quantum physics

Quantum computers based on the twisting pathways of moving particles have so far lived only in theory – the particles they would rely on might not even exist.

But with the exciting discovery of electrons ‘swirling’ down a wire, the hunt is over for exactly the particles such quantum devices have been waiting for. Now the work of turning these theoretical computers into reality could soon be underway.

Researchers from the University of Sydney and Microsoft have observed electrons forming a kind of matter called a quasiparticle under conditions that saw them behave as theoretical objects called Majorana fermions.

Continue reading “This New Proof of Majorana Fermions Is Going to Be Massive For Quantum Devices” »

Sep 6, 2017

Australia researchers say find new way to build quantum computers

Posted by in categories: computing, particle physics, quantum physics

SINGAPORE (Reuters) — Researchers in Australia have found a new way to build quantum computers which they say would make them dramatically easier and cheaper to produce at scale.

Quantum computers promise to harness the strange ability of subatomic particles to exist in more than one state at a time to solve problems that are too complex or time-consuming for existing computers.

Google, IBM and other technology companies are all developing quantum computers, using a range of approaches.

Continue reading “Australia researchers say find new way to build quantum computers” »