Blog

Archive for the ‘particle physics’ category: Page 446

Jun 7, 2019

To catch and reverse a quantum jump mid-flight

Posted by in categories: evolution, particle physics, quantum physics

In quantum physics, measurements can fundamentally yield discrete and random results. Emblematic of this feature is Bohr’s 1913 proposal of quantum jumps between two discrete energy levels of an atom. Experimentally, quantum jumps were first observed in an atomic ion driven by a weak deterministic force while under strong continuous energy measurement2,3,4. The times at which the discontinuous jump transitions occur are reputed to be fundamentally unpredictable. Despite the non-deterministic character of quantum physics, is it possible to know if a quantum jump is about to occur? Here we answer this question affirmatively: we experimentally demonstrate that the jump from the ground state to an excited state of a superconducting artificial three-level atom can be tracked as it follows a predictable ‘flight’, by monitoring the population of an auxiliary energy level coupled to the ground state. The experimental results demonstrate that the evolution of each completed jump is continuous, coherent and deterministic. We exploit these features, using real-time monitoring and feedback, to catch and reverse quantum jumps mid-flight—thus deterministically preventing their completion. Our findings, which agree with theoretical predictions essentially without adjustable parameters, support the modern quantum trajectory theory5,6,7,8,9 and should provide new ground for the exploration of real-time intervention techniques in the control of quantum systems, such as the early detection of error syndromes in quantum error correction.

Read more

Jun 6, 2019

Humans ingest at least 50,000 plastic particles a year

Posted by in categories: food, particle physics

Food is contaminated with plastic, which means it’s going directly into our bodies.

If you have resisted giving up bottled water for any reason, this should change your mind. A new study estimates that people who drink bottled water ingest 90,000 additional plastic microplastic particles annually, compared to those who drink tap water, which puts only an extra 4,000 particles into their bodies.

This finding is part of a study that has estimated the number of plastic particles that humans ingest every year. Conducted by researchers at the University of Victoria, British Columbia, it pulled together data from 26 previous studies that had measured plastic in salt, beer, sugar, fish, shellfish, water, and urban air. Pairing this data with the U.S. dietary guidelines, the scientists calculated how many particles people were likely to consume annually. Their discovery? 50,000 for adults, 40,000 for children. When inhalation is factored in, the estimate jumps to between 74,000 and 121,000 for adults.

Continue reading “Humans ingest at least 50,000 plastic particles a year” »

Jun 6, 2019

Official LHC Results Have Finally Confirmed The Structure of Mysterious Pentaquarks

Posted by in category: particle physics

New results from the Large Hadron Collider have confirmed it. The mysterious five-quark subatomic particle — the pentaquark, only discovered a few years ago — really is composed of two sets of quarks.

One is a meson, a type of particle that contains a quark and antiquark pair; the other is a three-quark baryon: the subatomic particle that makes up most of the normal matter in the Universe, including protons and electrons.

This confirms that quarks aren’t just chucked together like a loose bag of marbles, but instead are structured more similarly to the way protons and neutrons are bound in an atomic nucleus — what the researchers call a ‘molecular’ state.

Continue reading “Official LHC Results Have Finally Confirmed The Structure of Mysterious Pentaquarks” »

Jun 6, 2019

Physicists Search for Monstrous Higgs Particle. It Could Seal the Fate of the Universe

Posted by in categories: particle physics, space

Without the Higgs, the Standard Model of particle physics comes crashing down.

Read more

Jun 5, 2019

The Quatron Transistor

Posted by in categories: computing, engineering, particle physics, quantum physics

Atomic BECs were first achieved in 1995. Although it has become easier to realize atomic BECs since their discovery, they still require very low temperatures for operation. For most purposes, this is too expensive and impractical. Alternatively, negatively charged quatrons are quasi-particles composed of a hole and three electrons which form a stable BEC when coupled to light in triple quantum layer structures in semiconductor microcavities. This allows for both the greater experimental control found in quantum optics, and the benefits of matter wave systems, such as superconductivity and coherence. Moreover, due to the extremely small effective mass of the quasi-particles, quatrons can be used to achieve superconducting BECs at room temperature.


The Create the Future Design Contest was launched in 2002 by the publishers of NASA Tech Briefs magazine to help stimulate and reward engineering innovation. The annual event has attracted more than 8,000 product design ideas from engineers, entrepreneurs, and students worldwide.

Read more

Jun 4, 2019

Mini antimatter accelerator could rival the likes of the Large Hadron Collider

Posted by in categories: computing, cosmology, particle physics, transportation

Researchers have found a way to accelerate antimatter in a 1000x smaller space than current accelerators, boosting the science of exotic particles.

The new could be used to probe more mysteries of , like the properties of the Higgs boson and the nature of dark matter and dark energy, and provide more sensitive testing of aircraft and computer chips.

The method has been modelled using the properties of existing lasers, with experiments planned soon. If proven, the technology could allow many more labs around the world to conduct antimatter acceleration experiments.

Continue reading “Mini antimatter accelerator could rival the likes of the Large Hadron Collider” »

Jun 4, 2019

Experiments underway to turn light into matter

Posted by in category: particle physics

In laser facilities in the UK, Imperial physicists are testing an 84-year-old theory which was once thought impossible to prove.

The theory of the Breit-Wheeler process says it should be possible to turn into matter by smashing two particles of light (photons) together to create an electron and a positron. However, past attempts to do this have required the addition of other high-energy particles.

Physicists from Imperial College London, led by Professor Steven Rose, came up with a way of testing the theory that did not rely on these added extras in 2014, and today an experiment is running in the hope of turning light directly into matter for the first time.

Read more

Jun 4, 2019

Scientists design a collider that turns light into matter

Posted by in category: particle physics

We could see physical matter created out of nothing but light within 12 months if a new particle collider works as posited.

Read more

Jun 4, 2019

Atom lasers

Posted by in categories: innovation, particle physics

Soon after the invention of the laser in the late 1950s many dubbed the discovery as a solutYou’ve reached the limit of what you can view on Physics World without registering If you already have an account on Physics World, then please sign in to continue reading If you do not yet have an account, …

Read more

Jun 3, 2019

Physicists can predict the jumps of Schrodinger’s cat (and finally save it)

Posted by in categories: particle physics, quantum physics

Yale researchers have figured out how to catch and save Schrödinger’s famous cat, the symbol of quantum superposition and unpredictability, by anticipating its jumps and acting in real time to save it from proverbial doom. In the process, they overturn years of cornerstone dogma in quantum physics.

The discovery enables researchers to set up an early warning system for imminent jumps of artificial atoms containing quantum information. A study announcing the discovery appears in the June 3 online edition of the journal Nature.

Schrödinger’s cat is a well-known paradox used to illustrate the concept of superposition—the ability for two opposite states to exist simultaneously—and unpredictability in . The idea is that a cat is placed in a sealed box with a radioactive source and a poison that will be triggered if an atom of the radioactive substance decays. The superposition theory of quantum physics suggests that until someone opens the box, the cat is both alive and dead, a superposition of states. Opening the box to observe the cat causes it to abruptly change its randomly, forcing it to be either dead or alive.

Continue reading “Physicists can predict the jumps of Schrodinger’s cat (and finally save it)” »