Blog

Archive for the ‘particle physics’ category: Page 38

Aug 1, 2024

Can quantum particles mimic gravitational waves?

Posted by in categories: cosmology, particle physics, quantum physics

When two black holes collide, space and time shake and energy spreads out like ripples in a pond. These gravitational waves, predicted by Einstein in 1916, were observed for the first time by the Laser Interferometer Gravitational-Wave Observatory (LIGO) telescope in September 2015.

Aug 1, 2024

Mind-Bending Discovery: Neutrons Defy Classical Physics in Astonishing Experiment

Posted by in categories: particle physics, quantum physics

Is nature really as strange as quantum theory says — or are there simpler explanations? Neutron measurements prove: It doesn’t work without the strange properties of quantum theory.

Quantum theory allows particles to exist in superposition states, defying classical realism. The Leggett-Garg inequality tests this by comparing quantum behavior against classical expectations. Recent neutron beam experiments at TU Wien confirmed that particles do violate this inequality, reinforcing the validity of quantum theory over classical explanations.

Aug 1, 2024

Future chips could swap silicon for a 3-atom-thick crystal semiconductor full of ‘defects’ that pack in more power

Posted by in categories: computing, particle physics

Next generation of computer chips could ditch silicon for TMD — a 2D material that is embedded with ‘defects’ which can be harnessed to improve performance.

Jul 31, 2024

Black holes as particle accelerators: a brief review

Posted by in categories: cosmology, particle physics

Tomohiro harada 1 and masashi kimura 2

Published 28 November 2014 • © 2014 IOP Publishing Ltd.

Jul 31, 2024

Newly discovered sheets of nanoscale ‘cubes’ make excellent catalysts

Posted by in categories: nanotechnology, particle physics

Researchers from Tokyo Metropolitan University have created sheets of transition metal chalcogenide “cubes” connected by chlorine atoms. While sheets of atoms have been widely studied e.g. graphene, the team’s work breaks new ground by using clusters instead. The team succeeded in forming nanoribbons inside carbon nanotubes for structural characterization, while also forming microscale sheets of cubes which could be exfoliated and probed. These were shown to be an excellent catalyst for generating hydrogen.

The findings have been published in Advanced Materials (“Superatomic layer of cubic Mo 4 S 4 clusters connected by Cl cross-linking”).

„ and show the arrangement of the nanosheet when viewed from different directions, respectively. (Image: Tokyo Metropolitan University)

Jul 31, 2024

‘Sensational breakthrough’ marks step toward revealing hidden structure of prime numbers

Posted by in categories: mathematics, particle physics

face_with_colon_three steps towards infinity getting much closer to the solution with reinmans hypothesis: D.


Just as molecules are composed of atoms, in math, every natural number can be broken down into its prime factors—those that are divisible only by themselves and 1. Mathematicians want to understand how primes are distributed along the number line, in the hope of revealing an organizing principle for the atoms of arithmetic.

“At first sight, they look pretty random,” says James Maynard, a mathematician at the University of Oxford. “But actually, there’s believed to be this hidden structure within the prime numbers.”

Continue reading “‘Sensational breakthrough’ marks step toward revealing hidden structure of prime numbers” »

Jul 30, 2024

Revolutionizing Data Storage: How 3D Metamaterials and Tiny Magnetic Bubbles Could Change Everything

Posted by in categories: particle physics, robotics/AI

For the first time, researchers have demonstrated that not just individual bits, but entire bit sequences can be stored in cylindrical domains: tiny, cylindrical areas measuring just around 100 nanometers. As the team reports in the journal Advanced Electronic Materials, these findings could pave the way for novel types of data storage and sensors, including even magnetic variants of neural networks.

Groundbreaking Magnetic Storage

“A cylindrical domain, which we physicists also call a bubble domain, is a tiny, cylindrical area in a thin magnetic layer. Its spins, the electrons’ intrinsic angular momentum that generates the magnetic moment in the material, point in a specific direction. This creates a magnetization that differs from the rest of the environment. Imagine a small, cylinder-shaped magnetic bubble floating in a sea of opposite magnetization,” says Prof. Olav Hellwig from Helmholtz-Zentrum Dresden-Rossendorf ’s Institute of Ion Beam Physics and Materials Research, describing the subject of his research. He and his team are confident that such magnetic structures possess a great potential for spintronic applications.

Jul 30, 2024

Faster Than a Speeding Photon: How Tachyons Challenge Modern Physics

Posted by in categories: particle physics, quantum physics

Recent advancements in tachyon theory have addressed past inconsistencies by incorporating both past and future states into the boundary conditions, leading to a new quantum entanglement theory and suggesting a critical role for tachyons in matter formation.

Tachyons are hypothetical particles that travel at speeds greater than the speed of light. These superluminal particles, are the “enfant terrible” of modern physics. Until recently, they were generally regarded as entities that did not fit into the special theory of relativity. However, a paper just published by physicists from the University of Warsaw and the University of Oxford has shown that many of these prejudices were unfounded. Tachyons are not only not ruled out by the theory, but allow us to understand its causal structure better.

Superluminal Motion and Tachyons.

Jul 29, 2024

Dark matter seen through forest: Study examines matter distribution and supports unknown influence or new particle

Posted by in categories: cosmology, mapping, particle physics

The dense peaks in the wavelength distribution graph observed in a Lyman-Alpha forest indeed resemble many small trees. Each of those peaks represents a sudden drop in “light” at a specific and narrow wavelength, effectively mapping the matter that light has encountered on its journey to us.

Jul 29, 2024

Quantum dance of entangled photons captured in real-time

Posted by in categories: particle physics, quantum physics

The captivating world of quantum mechanics is constantly evolving, revealing complexities that challenge our perception of reality. Recent advancements illuminate the puzzling wave functions of entangled photons, providing remarkable insights into the behavior of these fundamental particles.

At the forefront of this research are experts from the University of Ottawa and Sapienza University of Rome. Their innovative approach allows for real-time visualization of entangled photon wave functions, pushing the boundaries of what we thought possible in quantum science.

Quantum entanglement is a mind-boggling phenomenon that underscores the profound interconnectedness of two particles.

Page 38 of 592First3536373839404142Last