Blog

Archive for the ‘particle physics’ category: Page 32

Aug 19, 2024

Negative Entanglement Entropy

Posted by in categories: computing, particle physics, quantum physics

Researchers have successfully demonstrated negative entanglement entropy using classical electrical circuits as stand-ins for complex quantum systems, providing a practical model for exploring exotic quantum phenomena and advancing quantum information technology.

Entanglement entropy quantifies the degree of interconnectedness between different parts of a quantum system. It indicates how much information about one part reveals about another, uncovering hidden correlations between particles. This concept is essential for advancing quantum computing and quantum communication technologies.

To understand what negative entanglement entropy means, we will first need to know what entanglement and entropy are.

Aug 18, 2024

The Soliton Model of Elementary Particles (Dennis Braun)

Posted by in categories: media & arts, particle physics

Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.

Aug 18, 2024

Scientists Discovered a Secret World Where Particles Turn Chaos Into Order

Posted by in categories: innovation, particle physics

It’s all about the entropy.

Aug 17, 2024

Harvard Scientists Discover Quantum Order in Chemical Chaos

Posted by in categories: chemistry, particle physics, quantum physics

Harvard researchers have shown that quantum coherence can survive chemical reactions at ultracold temperatures. Using advanced techniques, they demonstrated this with 40K87Rb bialkali molecules, suggesting potential applications in quantum information science and broader implications for understanding chemical reactions.

Zoom in on a chemical reaction to the quantum level and you’ll notice that particles behave like waves that can ripple and collide. Scientists have long sought to understand quantum coherence, the ability of particles to maintain phase relationships and exist in multiple states simultaneously; this is akin to all parts of a wave being synchronized. It has been an open question whether quantum coherence can persist through a chemical reaction where bonds dynamically break and form.

Now, for the first time, a team of Harvard scientists has demonstrated the survival of quantum coherence in a chemical reaction involving ultracold molecules. These findings highlight the potential of harnessing chemical reactions for future applications in quantum information science.

Aug 17, 2024

Physicists uncover new phenomena in fractional quantum Hall effects

Posted by in categories: particle physics, quantum physics

Imagine a two-dimensional flatland, instead of our three-dimensional world, where the rules of physics are turned on their head and particles like electrons defy expectations to reveal new secrets. That’s exactly what a team of researchers, including Georgia State University Professor of Physics Ramesh G. Mani and recent Ph.D. graduate U. Kushan Wijewardena, has been studying at Georgia State’s laboratories.

Aug 17, 2024

Auroras and Outages: Exploring the Vast Atmospheric Shifts of May’s Geomagnetic Superstorm

Posted by in categories: particle physics, satellites

What could the anomalies in temperature, composition, location, and spread of particles mean for satellites and GPS?

A powerful geomagnetic storm on May 11 led to visible auroras in the southern U.S. and disrupted GPS technology. Researchers from Virginia Tech, utilizing NASA ’s GOLD instrument, documented unprecedented atmospheric phenomena and examined the effects on Earth’s ionosphere. The studies underscore the dynamic nature of the upper atmosphere and its susceptibility to solar activities, which are currently intensifying as we approach the peak of the solar cycle in 2025.

Stunning Auroras and Technological Disruptions.

Aug 16, 2024

We might be transported into a parallel universe by the Large Hadron Collider in an experiment

Posted by in categories: cosmology, particle physics

Scientists Can Now Test for Extra Dimensions and Unveil New Realities with the LHC

TL;DR

The Large Hadron Collider (LHC) is pushing the boundaries of physics by enabling scientists to search for the Higgs Boson, explore the mysteries of dark matter, and potentially detect evidence of extra dimensions. Despite wild conspiracy theories claiming the LHC could open portals to parallel dimensions or create black holes, the reality is grounded in groundbreaking scientific exploration. The LHC may even briefly produce microscopic black holes, offering insights into the existence of extra dimensions without any danger to our planet. These discoveries could revolutionise our understanding of the universe.

Aug 15, 2024

Claudia de Rham

Posted by in categories: cosmology, particle physics, quantum physics

Avshalom Elitzur, Claudia de Rham and Harry Cliff debate the relationship between mystery and scientific discovery.

Does science eradicate mystery or expand it?

Continue reading “Claudia de Rham” »

Aug 15, 2024

Researchers discover new way to purify liquid argon for neutrino experiments

Posted by in category: particle physics

Construction workers have finished the excavation of the huge caverns that will house the international Deep Underground Neutrino Experiment. While engineers and technicians are preparing for the installation of the gigantic neutrino detectors into these caverns a mile underground, scientists around the world are working to optimize DUNE’s particle detector technology.

Aug 15, 2024

‘Mirror’ nuclei help connect nuclear theory and neutron stars

Posted by in categories: nuclear energy, particle physics, space

Adding or removing neutrons from an atomic nucleus leads to changes in the size of the nucleus. This in turn causes tiny changes in the energy levels of the atom’s electrons, known as isotope shifts. Scientists can use precision measurements of these energy shifts to measure the radius of the nucleus of an isotope.

Page 32 of 591First2930313233343536Last