Blog

Archive for the ‘particle physics’ category: Page 310

Jul 4, 2021

Scientists Have Found A Particle That Could Open Portal Into Fifth Dimension

Posted by in categories: cosmology, particle physics

The scientists studied fermion masses which they are of the belief that can be communicated into the fifth dimension through portals, forming dark matter relics and ‘fermionic dark matter’ within the novel fifth dimension.

Researchers said in a statement to Vice, “We found that the new scalar field had an interesting, non-trivial behaviour along the extra dimension. If this heavy particle exists, it would necessarily connect the visible matter that we know and that we have studied in detail with the constituents of dark matter, assuming the dark matter is composed out of fundamental fermions, which live in the extra dimension.”

They refer to the particle as a potential messenger to the dark sector. But hypothesising is not as hard as actually looking for the particle. If you didn’t know, the Higgs Boson Particle which was discovered in 2012 and also rewarded the discoverer with a Nobel Prize, was first proposed sometime in 1964. It was only discovered after the construction of the Large Hadron Collider — world’s most powerful particle accelerator.

Jul 4, 2021

Physicists Teach AI to Simulate Atomic Clusters

Posted by in categories: information science, particle physics, quantum physics, robotics/AI

Physics-informed machine learning might help verify microchips.


Physicists love recreating the world in software. A simulation lets you explore many versions of reality to find patterns or to test possibilities. But if you want one that’s realistic down to individual atoms and electrons, you run out of computing juice pretty quickly.

Machine-learning models can approximate detailed simulations, but often require lots of expensive training data. A new method shows that physicists can lend their expertise to machine-learning algorithms, helping them train on a few small simulations consisting of a few atoms, then predict the behavior of system with hundreds of atoms. In the future, similar techniques might even characterize microchips with billions of atoms, predicting failures before they occur.

Continue reading “Physicists Teach AI to Simulate Atomic Clusters” »

Jul 4, 2021

A crystal made of electrons

Posted by in categories: particle physics, quantum physics

Researchers at ETH Zurich have succeeded in observing a crystal that consists only of electrons. Such Wigner crystals were already predicted almost ninety years ago but could only now be observed directly in a semiconductor material.

Crystals have fascinated people through the ages. Who hasn’t admired the complex patterns of a snowflake at some point, or the perfectly symmetrical surfaces of a rock crystal? The magic doesn’t stop even if one knows that all this results from a simple interplay of attraction and repulsion between atoms and electrons. A team of researchers led by Ataç Imamoğlu, professor at the Institute for Quantum Electronics at ETH Zurich, have now produced a very special crystal. Unlike normal crystals, it consists exclusively of electrons. In doing so, they have confirmed a that was made almost ninety years ago and which has since been regarded as a kind of holy grail of condensed matter physics. Their results were recently published in the scientific journal Nature.

Jul 3, 2021

A Crystal Made Exclusively of Electrons – “Holy Grail” Wigner Crystals Observed for First Time

Posted by in categories: particle physics, quantum physics

Researchers at ETH Zurich have succeeded in observing a crystal that consists only of electrons. Such Wigner crystals were already predicted almost ninety years ago but could only now be observed directly in a semiconductor material.

Crystals have fascinated people through the ages. Who hasn’t admired the complex patterns of a snowflake at some point, or the perfectly symmetrical surfaces of a rock crystal? The magic doesn’t stop even if one knows that all this results from a simple interplay of attraction and repulsion between atoms and electrons. A team of researchers led by Ataç Imamoğlu, professor at the Institute for Quantum Electronics at ETH Zurich, have now produced a very special crystal. Unlike normal crystals, it consists exclusively of electrons. In doing so, they have confirmed a theoretical prediction that was made almost ninety years ago and which has since been regarded as a kind of holy grail of condensed matter physics. Their results were recently published in the scientific journal Nature.

A decades-old prediction

Continue reading “A Crystal Made Exclusively of Electrons – ‘Holy Grail’ Wigner Crystals Observed for First Time” »

Jul 1, 2021

New Cold Atom Source Technology Enables Portable Quantum Devices

Posted by in categories: particle physics, quantum physics, space

Technology advance could enable space-based atomic clocks, improving communications and GPS navigation.

Although quantum technology has proven valuable for highly precise timekeeping, making these technologies practical for use in a variety of environments is still a key challenge. In an important step toward portable quantum devices, researchers have developed a new high-flux and compact cold-atom source with low power consumption that can be a key component of many quantum technologies.

“The use of quantum technologies based on laser-cooled atoms has already led to the development of atomic clocks that are used for timekeeping on a national level,” said research team leader Christopher Foot from Oxford University in the U.K. “Precise clocks have many applications in the synchronization of electronic communications and navigation systems such as GPS. Compact atomic clocks that can be deployed more widely, including in space, provide resilience in communications networks because local clocks can maintain accurate timekeeping even if there is a network disruption.”

Jul 1, 2021

New five-metal alloy makes for 2D catalyst to convert CO2 into fuels

Posted by in categories: chemistry, particle physics, sustainability

Researchers have created an unusual new alloy made up of not two, but five different metals, and put it to work as a catalyst. The new material is two-dimensional, and was able to convert carbon dioxide into carbon monoxide effectively, potentially helping to turn the greenhouse gas into fuels.

The new alloy belongs to a class of materials called transition metal dichalcogenides (TMDCs), which are, as the name suggests, made up of combinations of transition metals and chalcogens. Extremely thin films of TMDCs have recently shown promise in a range of electronic and optical devices, but researchers on the new study wondered if they could also be used as catalysts for chemical reactions.

The thinking goes that because reactions occur on the surface of a catalyst, materials with high surface areas will be more effective catalysts. And as sheets only a few atoms thick, TMDCs are almost nothing but surface area.

Jun 27, 2021

Thousands of physicists are working together to redefine the cosmos

Posted by in categories: cosmology, particle physics

The Large Hadron Collider has a lot of tasks ahead of it. Next stop: investigating the Big Bang.


The truth is, we don’t really know because it takes huge amounts of energy and precision to recreate and understand the cosmos on such short timescales in the lab.

But scientists at the Large Hadron Collider (LHC) at CERN, Switzerland aren’t giving up.

Continue reading “Thousands of physicists are working together to redefine the cosmos” »

Jun 27, 2021

Optical tweezer technology tweaked to overcome dangers of heat

Posted by in categories: biological, particle physics

Three years ago, Arthur Ashkin won the Nobel Prize for inventing optical tweezers, which use light in the form of a high-powered laser beam to capture and manipulate particles. Despite being created decades ago, optical tweezers still lead to major breakthroughs and are widely used today to study biological systems.

However, optical tweezers do have flaws. The prolonged interaction with the can alter molecules and particles or damage them with excessive heat.

Researchers at The University of Texas at Austin have created a new version of optical tweezer technology that fixes this problem, a development that could open the already highly regarded tools to new types of research and simplify processes for using them today.

Jun 26, 2021

The Early Universe Explained by Neil deGrasse Tyson

Posted by in categories: cosmology, information science, mathematics, neuroscience, nuclear energy, particle physics, singularity

Neil deGrasse Tyson explains the early state of our Universe. At the beginning of the universe, ordinary space and time developed out of a primeval state, where all matter and energy of the entire visible universe was contained in a hot, dense point called a gravitational singularity. A billionth the size of a nuclear particle.

While we can not imagine the entirety of the visible universe being a billion times smaller than a nuclear particle, that shouldn’t deter us from wondering about the early state of our universe. However, dealing with such extreme scales is immensely counter-intuitive and our evolved brains and senses have no capacity to grasp the depths of reality in the beginning of cosmic time. Therefore, scientists develop mathematical frameworks to describe the early universe.

Continue reading “The Early Universe Explained by Neil deGrasse Tyson” »

Jun 26, 2021

In Extraordinary Experiment, Physicists Bring Human-Scale Object to Near Standstill, Reaching a Quantum State

Posted by in categories: particle physics, quantum physics

The results open possibilities for studying gravity’s effects on relatively large objects in quantum states.

To the human eye, most stationary objects appear to be just that — still, and completely at rest. Yet if we were handed a quantum lens, allowing us to see objects at the scale of individual atoms, what was an apple sitting idly on our desk would appear as a teeming collection of vibrating particles, very much in motion.

In the last few decades, physicists have found ways to super-cool objects so that their atoms are at a near standstill, or in their “motional ground state.” To date, physicists have wrestled small objects such as clouds of millions of atoms, or nanogram-scale objects, into such pure quantum states.