Blog

Archive for the ‘particle physics’ category: Page 298

Sep 27, 2021

Quantum Heat Engines with Singular Interactions

Posted by in categories: particle physics, quantum physics

By harnessing quantum phenomena, quantum devices have the potential to outperform their classical counterparts. Here, we examine using wave function symmetry as a resource to enhance the performance of a quantum Otto engine. Previous work has shown that a bosonic working medium can yield better performance than a fermionic medium. We expand upon this work by incorporating a singular interaction that allows the effective symmetry to be tuned between the bosonic and fermionic limits. In this framework, the particles can be treated as anyons subject to Haldane’s generalized exclusion statistics. Solving the dynamics analytically using the framework of “statistical anyons”, we explore the interplay between interparticle interactions and wave function symmetry on engine performance.

Sep 26, 2021

Quantum mechanics of the ground state of four identical fermions

Posted by in categories: particle physics, quantum physics

Basically this was found out in the 1980s and this allows for teleportation in real life 😳 😅 🙃


Wave functions for four identical spin‐one‐half fermions with total spin 0 1, and 2 are constructed. Lower bounds on the ground state energies of these spin states are derived. The results are illustrated with an.

Sep 26, 2021

Magnetic monopoles in spin ice

Posted by in categories: particle physics, quantum physics

Circa 2008


A theoretical study proposes that magnetic monopoles may appear not as elementary but as emergent particles in complex, strongly-correlated magnetic systems such as spin ice, in analogy to fractional electric charges in quantum Hall systems. This theory explains a mysterious phase transition in spin ice that has been observed experimentally.

Sep 26, 2021

Life-like cells are made of metal

Posted by in categories: biological, evolution, particle physics

Circa 2011 o,.o Foglet bodies around the corner sooner than we think 🤔


Could living things that evolved from metals be clunking about somewhere in the universe? Perhaps. In a lab in Glasgow, UK, one man is intent on proving that metal-based life is possible.

He has managed to build cell-like bubbles from giant metal-containing molecules and has given them some life-like properties. He now hopes to induce them to evolve into fully inorganic self-replicating entities.

Continue reading “Life-like cells are made of metal” »

Sep 25, 2021

Researchers Have Found A New Way To Control Magnets

Posted by in categories: computing, nanotechnology, particle physics

Researchers at MIT have developed a way of quickly changing the magnetic polarity of a ferrimagnet 180 degrees, using just a small applied voltage. According to the researchers, the discovery could herald a new era of ferrimagnetic logic and data storage systems.

The findings were published in the journal Nature Nanotechnology in a paper co-authored by postdoctoral researcher Mantao Huang, MIT professor of materials science and technology Geoffrey Beach, and professor of nuclear science and technology Bilge Yildiz, as well as 15 other researchers from MIT and other institutions in Minnesota, Germany, Spain, and Korea.

The majority of magnets we come across are of “ferromagnetic” materials. The atoms in these materials are oriented in the same direction with their north-south magnet axes; thus, their combined strength is strong enough to create attraction. As a result, these materials are often used in the modern high-tech environment.

Sep 24, 2021

Particle seen switching between matter and antimatter at CERN

Posted by in categories: particle physics, quantum physics

A subatomic particle has been found to switch between matter and antimatter, according to Oxford physicists analyzing data from the Large Hadron Collider. It turns out that an unfathomably tiny weight difference between two particles could have saved the universe from annihilation soon after it began.

Antimatter is kind of the “evil twin” of normal matter, but it’s surprisingly similar – in fact, the only real difference is that antimatter has the opposite charge. That means that if ever a matter and antimatter particle come into contact, they will annihilate each other in a burst of energy.

To complicate things, some particles, such as photons, are actually their own antiparticles. Others have even been seen to exist as a weird mixture of both states at the same time, thanks to the quantum quirk of superposition (illustrated most famously through the thought experiment of Schrödinger’s cat.) That means that these particles actually oscillate between being matter and antimatter.

Sep 23, 2021

The World’s Thinnest LED Is Only 3 Atoms Thick

Posted by in category: particle physics

Circa 2014


LEDs have come a long ways. From the early 70s when a bulky LED watch cost thousands of dollars to LG’s announcement last month that it had created an OLED TV as thin as a magazine, these glowing little bits of magic have become wonderfully cheap and impossibly small. But guess what: they’re about to get much smaller.

Sep 23, 2021

Mario animated using the supercooled atoms in a quantum computer

Posted by in categories: computing, particle physics, quantum physics

Physicists with the Harvard-MIT Center for Ultracold Atoms have just announced new success with a particular style of quantum computer —a “programmable quantum simulator”. In this architecture, they take supercold rubidium atoms and use optical tweezers (beams of light) to arrange the atoms into shapes.

As the Harvard Gazette writes …

This new system allows the atoms to be assembled in two-dimensional arrays of optical tweezers. This increases the achievable system size from 51 to 256 qubits. Using the tweezers, researchers can arrange the atoms in defect-free patterns and create programmable shapes like square, honeycomb, or triangular lattices to engineer different interactions between the qubits.

Sep 22, 2021

A Particle Physics Experiment Might Have Directly Observed Dark Energy

Posted by in categories: cosmology, particle physics

In a new study, a team of researchers proposed that Dark Matter detectors could also search for the elusive force that is causing our Universe to expand (Dark Energy)!


About 25 years ago, astrophysicists noticed something very interesting about the Universe. The fact that it was in a state of expansion had been known since the 1920s, thanks to the observation of Edwin Hubble. But thanks to the observations astronomers were making with the space observatory that bore his name (the Hubble Space Telescope), they began to notice how the rate of cosmic expansion was getting faster!

Continue reading “A Particle Physics Experiment Might Have Directly Observed Dark Energy” »

Sep 22, 2021

Alien Planets Are Even Less Habitable Than We Thought

Posted by in categories: particle physics, robotics/AI, space

It turns out, Mars was always fated for a waterless destiny.

New observations from robotic explorers like NASA’s Perseverance and Curiosity have revealed much about the ancient past of the Red Planet, where liquid water flowed throughout the planet’s surface. It used to have lakes, streams, rivers, and perhaps even a colossal ocean stretching around the horizon of Mars’ northern hemisphere. For decades, scientists have thought the weakening of the Martian magnetic field enabled charged particles from the sun to strip away the atmosphere, literally blowing away the bodies of water.

Continue reading “Alien Planets Are Even Less Habitable Than We Thought” »