Blog

Archive for the ‘particle physics’ category: Page 275

Jan 26, 2022

The Weak Gravity Conjecture: A Review

Posted by in categories: mathematics, particle physics, quantum physics

‘’The Weak Gravity Conjecture holds that in a theory of quantum gravity, any gauge force must mediate interactions stronger than gravity for some particles. This statement has surprisingly deep and extensive connections to many different areas of physics and mathematics. Several variations on the basic conjecture have been proposed, including statements that are much stronger but are nonetheless satisfied by all known consistent quantum gravity theories. We review these relat… See more.


The Weak Gravity Conjecture holds that in a theory of quantum gravity, any.

Gauge force must mediate interactions stronger than gravity for some particles.

Continue reading “The Weak Gravity Conjecture: A Review” »

Jan 26, 2022

Vibrating atoms make robust qubits, physicists find

Posted by in categories: computing, particle physics, quantum physics

The team was able to maintain this state of superposition among hundreds of vibrating pairs of fermions. In so doing, they achieved a new “quantum register,” or system of qubits, that appears to be robust over relatively long periods of time. The discovery, published today in the journal Nature, demonstrates that such wobbly qubits could be a promising foundation for future quantum computers.

New qubits stay in “superposition” for up to 10 seconds, and could make a promising foundation for quantum computers.

Continue reading “Vibrating atoms make robust qubits, physicists find” »

Jan 26, 2022

Laniakea, our local supercluster, is being destroyed

Posted by in categories: cosmology, particle physics

On the largest cosmic scales, planet Earth appears to be anything but special. Like hundreds of billions of other planets in our galaxy, we orbit our parent star; like hundreds of billions of solar systems, we revolve around the galaxy; like the majority of galaxies in the Universe, we’re bound together in either a group or cluster of galaxies. And, like most galactic groups and clusters, we’re a small part of a larger structure containing over 100,000 galaxies: a supercluster. Ours is named Laniakea: the Hawaiian word for “immense heaven.”

Superclusters have been found and charted throughout our observable Universe, where they’re more than 10 times as rich as the largest known clusters of galaxies. Unfortunately, owing to the presence of dark energy in the Universe, these superclusters ⁠— including our own ⁠— are only apparent structures. In reality, they’re mere phantasms, in the process of dissolving before our very eyes.

The Universe as we know it began some 13.8 billion years ago with the Big Bang. It was filled with matter, antimatter, radiation, etc.; all the particles and fields that we know of today, and possibly even more. From the earliest instants of the hot Big Bang, however, it wasn’t simply a uniform sea of these energetic quanta. Instead, there were tiny imperfections ⁠— at about the 0.003% level ⁠— on all scales, where some regions had slightly more or slightly less matter and energy than average.

Jan 25, 2022

Physicist solves century old problem of radiation reaction

Posted by in categories: mathematics, particle physics

A Lancaster physicist has proposed a radical solution to the question of how a charged particle, such as an electron, responded to its own electromagnetic field.

This question has challenged for over 100 years but mathematical physicist Dr. Jonathan Gratus has suggested an alternative approach—published in the Journal of Physics A: Mathematical and Theoretical with controversial implications.

It is well established that if a point charge accelerates it produces . This has both energy and momentum, which must come from somewhere. It is usually assumed that they come from the energy and momentum of the charged particle, damping the motion.

Jan 25, 2022

Studying the big bang with artificial intelligence

Posted by in categories: cosmology, information science, mathematics, particle physics, quantum physics, robotics/AI

It could hardly be more complicated: tiny particles whir around wildly with extremely high energy, countless interactions occur in the tangled mess of quantum particles, and this results in a state of matter known as “quark-gluon plasma”. Immediately after the Big Bang, the entire universe was in this state; today it is produced by high-energy atomic nucleus collisions, for example at CERN.

Such processes can only be studied using high-performance computers and highly complex computer simulations whose results are difficult to evaluate. Therefore, using artificial intelligence or machine learning for this purpose seems like an obvious idea. Ordinary machine-learning algorithms, however, are not suitable for this task. The mathematical properties of particle physics require a very special structure of neural networks. At TU Wien (Vienna), it has now been shown how neural networks can be successfully used for these challenging tasks in particle physics.

Jan 25, 2022

Astronomers Find the Biggest Structure in the Milky Way: Filament of Hydrogen 3,900 Light-Years Long

Posted by in categories: evolution, particle physics, space

Roughly 13.8 billion years ago, our Universe was born in a massive explosion that gave rise to the first subatomic particles and the laws of physics as we know them. About 370,000 years later, hydrogen had formed, the building block of stars, which fuse hydrogen and helium in their interiors to create all the heavier elements. While hydrogen remains the most pervasive element in the Universe, it can be difficult to detect individual clouds of hydrogen gas in the interstellar medium (ISM).

This makes it difficult to research the early phases of star formation, which would offer clues about the evolution of galaxies and the cosmos. An international team led by astronomers from the Max Planck Institute of Astronomy (MPIA) recently noticed a massive filament of atomic hydrogen gas in our galaxy. This structure, named “Maggie,” is located about 55,000 light-years away (on the other side of the Milky Way) and is one of the longest structures ever observed in our galaxy.

Continue reading “Astronomers Find the Biggest Structure in the Milky Way: Filament of Hydrogen 3,900 Light-Years Long” »

Jan 25, 2022

Physicists detect an Aharonov-Bohm effect for gravity

Posted by in categories: particle physics, quantum physics

Yakir Aharonov and David Bohm proposed the effect that now bears their name in 1959, arguing that while classical potentials have no physical reality apart from the fields they represent, the same is not true in the quantum world. To make their case, the pair proposed a thought experiment in which an electron beam in a superposition of two wave packets is exposed to a time-varying electrical potential (but no field) when passing through a pair of metal tubes. They argued that the potential would introduce a phase difference between the wave packets and therefore lead to a measurable physical effect – a set of interference fringes – when the wave packets are recombined.

Seeking a gravitational counterpart

In the latest research, Mark Kasevich and colleagues at Stanford University show that the same effect also holds true for gravity. The platform for their experiment is an atom interferometer, which uses a series of laser pulses to split, guide and recombine atomic wave packets. The interference from these wave packets then reveals any change in the relative phase experienced along the two arms.

Jan 24, 2022

Quantum particles can feel the influence of gravitational fields they never touch

Posted by in categories: particle physics, quantum physics

A quantum phenomenon predicted in 1959, the Aharonov-Bohm effect, also applies to gravity.

Jan 22, 2022

Quantum Computing in Silicon Just Made a Major Breakthrough. 99% Efficiency?

Posted by in categories: computing, particle physics, quantum physics

Jan 21, 2022

First fully programmable quantum computer based on neutral atoms

Posted by in categories: drones, particle physics, quantum physics, robotics/AI

Most quantum computers are based on superconductors or trapped ions, but an alternative approach using ordinary atoms may have advantages.


Back in 2016, we told you about the iBubble, an underwater drone that autonomously follows and films scuba divers. Well, it now has a more capable industrial-use big brother, known as the Seasam.