Toggle light / dark theme

Researchers discover tightest arrangement of bilayer alkali metals between graphene layers

For the past hundred years, it has been widely recognized through X-ray and electron diffraction measurements that graphene interlayers can only accommodate a single layer of alkali metal. Each layer being fully filled by single layer alkali metal atoms is considered the theoretical charging limit.

However, there have been no reports of studies directly observing the atomic arrangement of interlayer alkali metals and verifying whether graphene layers can only accommodate a single layer of alkali metal atoms or whether other techniques can achieve higher density or multiple layers of alkali metals.

The research team developed a technique to insert dense alkali metals between graphene layers. Utilizing a high-performance low-voltage (60 kV) , they have successfully observed the arrangement structure of alkali metal atoms between the graphene layers. The alkali metals are found densely packed in a two-layer structure in both bilayer graphene and in the surface layer graphite due to the flexible extension ability of their interlayer spacing.

Black Holes May Be Portal To Another Universe, Stephen Hawking Explains

Scientists have referred to black holes as cosmic objects that consume whatever comes into them but do not allow anything to escape from the inside. Stephen Hawking assumes that a black hole could be a portal to another universe. While addressing about 1,000 people at Harvard in 2015, Hawkings analyzed the groundbreaking theory with these words.

“Blackholes aren’t the eternal prisons they were once thought. Things can get out of a black hole, both from the outside and possibly through another universe. So, if you ever feel you’re in a black hole, don’t give up. There’s a way out.”

Scientists listening to the renowned astrophysicist were fascinated with his explanations. Keep in mind that Stephen Hawkings came up with Hawking’s radiation theory which revolutionized our understanding of black holes. According to this theory, Black holes thermally generate and emit subatomic particles until they lose their energy and proceed to evaporate. Based on this theory, Hawkings says that black holes are not entirely black and they don’t last for eternity.

CERN measures coupled resonance structure that may cause particle loss in accelerators for the first time

Whether in listening to music or pushing a swing in the playground, we are all familiar with resonances and how they amplify an effect—a sound or a movement, for example. However, in high-intensity circular particle accelerators, resonances can be an inconvenience, causing particles to fly off their course and resulting in beam loss. Predicting how resonances and non-linear phenomena affect particle beams requires some very complex dynamics to be disentangled.

Diamond Can Be Squeezed Into Something Even Harder. Now We Know How to Do It

Simulations of an elusive carbon molecule that leaves diamonds in the dust for hardness may pave the way to creating it in a lab.

Known as the eight-atom body-centered cubic (BC8) phase, the configuration is expected to be up to 30 percent more resistant to compression than diamond – the hardest known stable material on Earth.

Physicists from the US and Sweden ran quantum-accurate molecular-dynamics simulations on a supercomputer to see how diamond behaved under high pressure when temperatures rose to levels that ought to make it unstable, revealing new clues on the conditions that could push the carbon atoms in diamond into the unusual structure.

Supercomputers Crack the Code of Super-Diamond Synthesis

Researchers are on a quest to synthesize BC8, a carbon structure predicted to be tougher than diamond, using insights from advanced simulations and experimental efforts. This material, theoretically prevalent in the extreme pressures of exoplanets, remains a scientific mystery with promising applications in materials science.

Diamond is the strongest material known. However, another form of carbon has been predicted to be even tougher than diamond. The challenge is how to create it on Earth.

The eight-atom body-centered cubic (BC8) crystal is a distinct carbon phase: not diamond, but very similar. BC8 is predicted to be a stronger material, exhibiting a 30% greater resistance to compression than diamond. It is believed to be found in the center of carbon-rich exoplanets. If BC8 could be recovered under ambient conditions, it could be classified as a super-diamond.

Unlocking Quantum Secrets: The Revolutionary Dance of Nanoparticles

Innovative research leverages levitated optomechanics to observe quantum phenomena in larger objects, offering potential applications in quantum sensing and bridging the gap between quantum and classical mechanics.

The question of where the boundary between classical and quantum physics lies is one of the longest-standing pursuits of modern scientific research and in new research published today, scientists demonstrate a novel platform that could help us find an answer.

The laws of quantum physics govern the behavior of particles at minuscule scales, leading to phenomena such as quantum entanglement, where the properties of entangled particles become inextricably linked in ways that cannot be explained by classical physics.

/* */