Blog

Archive for the ‘nuclear energy’ category: Page 8

Sep 22, 2024

Autonomous robot replaces human fusion reactor inspectors in world-first trial

Posted by in categories: nuclear energy, robotics/AI

What just happened? Researchers have successfully deployed a fully autonomous robot to inspect the inside of a nuclear fusion reactor. This achievement – the first of its kind – took place over 35 days as part of trials at the UK Atomic Energy Authority’s Joint European Torus facility.

JET was one of the world’s largest and most powerful operational fusion reactors until it was recently shut down. Meanwhile, the robotic star of the show was, of course, the four-legged Spot robot from Boston Dynamics, souped up with “localization and mission autonomy solutions” from the Oxford Robotics Institute (ORI) and “inspection payload” from UKAEA.

Spot roamed JET’s environment twice daily, using sensors to map the facility layout, monitor conditions, steer around obstacles and personnel, and collect vital data. These inspection duties normally require human operators to control the robot remotely.

Sep 22, 2024

Bubbling, frothing and sloshing: Long-Hypothesized Plasma Instabilities Finally Observed

Posted by in categories: cosmology, nuclear energy, particle physics

Results could aid understanding of how black holes produce vast intergalactic jets. Scientists have observed new details of how plasma interacts with magnetic fields, potentially providing insight into the formation of enormous plasma jets that stretch between the stars.

Whether between galaxies or within doughnut-shaped fusion devices known as tokamaks, the electrically charged fourth state of matter known as plasma regularly encounters powerful magnetic fields, changing shape and sloshing in space. Now, a new measurement technique using protons, subatomic particles that form the nuclei of atoms, has captured details of this sloshing for the first time, potentially providing insight into the formation of enormous plasma jets that stretch between the stars.

Scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) created detailed pictures of a magnetic field bending outward because of the pressure created by expanding plasma. As the plasma pushed on the magnetic field, bubbling and frothing known as magneto-Rayleigh Taylor instabilities arose at the boundaries, creating structures resembling columns and mushrooms.

Sep 22, 2024

Three Mile Island reactor to provide power for Microsoft data centers

Posted by in categories: climatology, computing, nuclear energy, sustainability

HARRISBURG, Pa. — The owner of the shuttered Three Mile Island nuclear power plant said Friday that it plans to restart the reactor under a 20-year agreement that calls for tech giant Microsoft to buy the power to supply its data centers with carbon-free energy.

The announcement by Constellation Energy comes five years after its then-parent company, Exelon, shut down the plant, saying it was losing money and that Pennsylvania lawmakers had refused to bail it out.

Continue reading “Three Mile Island reactor to provide power for Microsoft data centers” »

Sep 19, 2024

Researchers build AI model database to find new alloys for nuclear fusion facilities

Posted by in categories: habitats, nuclear energy, robotics/AI

A study led by the Department of Energy’s Oak Ridge National Laboratory details how artificial intelligence researchers have created an AI model to help identify new alloys used as shielding for housing fusion applications components in a nuclear fusion reactor. The findings mark a major step towards improving nuclear fusion facilities.

Sep 19, 2024

Researchers create tiny nuclear-powered battery thousands of times more efficient than predecessors

Posted by in categories: nuclear energy, physics

A team of physicists and engineers affiliated with several institutions in China has developed an extremely small nuclear battery that they claim is up to 8,000 times more efficient than its predecessors. Their paper is published in the journal Nature.

Sep 18, 2024

Zirconium metals under extreme conditions found to deform in surprisingly complex ways

Posted by in categories: military, nuclear energy, sustainability

Materials are crucial to modern technology, especially those used in extreme environments like nuclear energy systems and military applications. These materials need to withstand intense pressure, temperature and corrosion. Understanding their lattice-level behavior under such conditions is essential for developing next-generation materials that are more resilient, cheaper, lighter and sustainable.

Sep 15, 2024

Tiny Laser Transforms Copper Wire Into a 180,000°F Cosmic Furnace

Posted by in categories: nuclear energy, space

Using a novel laser method, scientists mimicked the extreme environments of stars and planets, enhancing our understanding of astrophysical phenomena and supporting nuclear fusion research.

Extreme conditions prevail inside stars and planets. The pressure reaches millions of bars, and it can be several million degrees hot. Sophisticated methods make it possible to create such states of matter in the laboratory – albeit only for the blink of an eye and in a tiny volume. So far, this has required the world’s most powerful lasers, such as the National Ignition Facility (NIF) in California. But there are only a few of these light giants, and the opportunities for experiments are correspondingly rare.

A research team led by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), together with colleagues from the European XFEL, has now succeeded in creating and observing extreme conditions with a much smaller laser. At the heart of the new technology is a copper wire, finer than a human hair, as the group reports in the journal Nature Communications.

Sep 13, 2024

China to build first thorium molten salt NPP in Gobi Desert

Posted by in category: nuclear energy

China has announced the construction of a nuclear power plant that will be fuelled by liquid fuel based on molten thorium salt. The Shanghai Institute of Applied Physics (SINAP) has been engaged in research in this area since 2011 focusing on liquid fluoride-thorium reactors (LFTRs). The construction of a prototype of a thorium molten salt reactor (TMSR) with a capacity of 2 MW began in September 2018 and was reportedly completed in August 2021. China is seeking to get full intellectual property rights to this technology.

Now China plans to build the world’s first NPP based on molten salt in the Gobi desert. Construction will begin in 2025 with the aim of developing safer and more environmentally friendly nuclear energy. The reactor does not need water for cooling, since it uses liquid salt and carbon dioxide to transfer heat and generate electricity.

In 2022, SINAP received permission from the Ministry of Ecology and Environmental Protection to commission an experimental MTSR. This is the first nuclear molten salt reactor since the United States stopped its molten salt test reactor in 1969. The application for the operation of the experimental reactor was considered in China in June 2023, it was considered to be fully compliant with safety requirements.

Sep 12, 2024

Most powerful fuel in history, created after Hawking predicted it: 8 grams for 1 million miles

Posted by in categories: nuclear energy, transportation

Hydrogen has been defined on numerous occasions as “the fuel of the future”. We have seen other alternatives, such as ammonia or even methanol (which you may remember meeting with us), but what if there was an even more powerful one? Hawking predicted decades ago that the most powerful one could exist, and now they have finally created it. This is the new engine that has everything to revolutionize the planet but would require a huge mobilization of resources to manufacture.

The idea of using thorium for fueling cars has created the immense interest from auto enthusiasts, as such cars may become a clean, efficient and almost inexhaustible energy source for transport in the future. Nevertheless, the prospects of this technology are not as simple as may be suggested by this example, and at the moment, this technology is still rather hypothetical.

A thorium-powered car engine concept is based on the use of the radioactive material known as thorium as fuel. In principle, this engine employed a tiny measure of thorium to release heat through nuclear fission, and the heat was further transformed into electricity to run the car.

Sep 7, 2024

US company designs ‘groundbreaking’ subterranean power station with revolutionary nuclear technology: ‘We’ve innovated beyond other reactor designs’

Posted by in category: nuclear energy

One startup is planning to place a nuclear reactor one mile below the Earth’s surface to generate cleaner energy.

Page 8 of 137First56789101112Last