Blog

Archive for the ‘nuclear energy’ category: Page 76

Mar 28, 2021

Why More and More Environmentalists Want to Go Nuclear

Posted by in categories: climatology, nuclear energy, sustainability

Unfounded fears about nuclear technology may be undercutting the fight against climate change.


Nuclear power could be a big help in the fight against climate change. Learn why more environmentalists are starting to endorse it.

Mar 26, 2021

The World’s Strongest Laser is About to Simulate a Supernova

Posted by in categories: biotech/medical, nuclear energy

The world’s most powerful laser is scheduled for a slate of experiments next year.

The laser, in Romania, managed to fire at 10 petawatts — that’s one-tenth the power of all the sunlight that reaches Earth concentrated into a single laser beam — during a test run in March. Now, according to ExtremeTech, the scientists behind it intend to discover new high-energy cancer treatments and simulate supernovas to reveal how the stellar explosions form heavy metals.

The laser is part of the European Union’s Extreme Light Infrastructure project. The hope is that lasers will lead to new medical techniques, a better understanding of how the universe works, and improved nuclear safety.

Mar 23, 2021

Portable nuclear reactor project moves forward at Pentagon

Posted by in categories: engineering, government, military, nuclear energy

The two companies, along with Westinghouse Government Services, were each given preliminary contracts of less than $15 million in March 2020 to begin design work. The final design is due to the Strategic Capabilities Office in 2022, at which point the Defense Department will make a decision on whether to move forward with testing the systems.

“We are thrilled with the progress our industrial partners have made on their designs,” Jeff Waksman, Project Pele’s program manager, said in a statement. “We are confident that by early 2022 we will have two engineering designs matured to a sufficient state that we will be able to determine suitability for possible construction and testing.”

The Pentagon has long eyed nuclear power as a potential way to reduce both its energy cost and its vulnerability in its dependence on local energy grids. According to a news release, the Defense Department uses “approximately 30 Terawatt-hours of electricity per year and more than 10 million gallons of fuel per day.”

Mar 22, 2021

Doctors Capture Cherenkov Light Being Generated Inside Patient’s Eyeball For The First Time

Posted by in categories: biotech/medical, nuclear energy

For decades, people undergoing radiotherapy, which is used to treat cancer, have reported a bizarre phenomenon: Seeing flashes of light in their eyes, even when their eyes are closed.

Patients documented in the medical literature have described a ‘‘ray of blue light” and ‘‘seeing a blue neon light”, sometimes accompanied by a “white smell” during the delivery of radiation, lasting for a fraction of a second. There have been several theories for why this could be happening, including retinal pigments inside patients’ eyes being stimulated during the therapy, or that Cherenkov light or Cherenkov radiation – the same effect that makes nuclear reactors glow blue when they’re underwater – is produced inside the eyeball itself.

Now scientists have captured this strange light for the first time, producing the first photographic evidence that the phenomenon is in fact Cherenkov light.

Mar 20, 2021

Efficacy of the radial pair potential approximation for molecular dynamics simulations of dense plasmas

Posted by in categories: computing, information science, nuclear energy, particle physics

In this work, we carry out KS-MD simulations for a range of elements, temperatures, and densities, allowing for a systematic comparison of three RPP models. While multiple RPP models can be selected, 7–11 7. J. Vorberger and D. Gericke, “Effective ion–ion potentials in warm dense matter,” High Energy Density Phys. 9, 178 (2013). https://doi.org/10.1016/j.hedp.2012.12.009 8. Y. Hou, J. Dai, D. Kang, W. Ma, and J. Yuan, “Equations of state and transport properties of mixtures in the warm dense regime,” Phys. Plasmas 22, 022711 (2015). https://doi.org/10.1063/1.4913424 9. K. Wünsch, J. Vorberger, and D. Gericke, “Ion structure in warm dense matter: Benchmarking solutions of hypernetted-chain equations by first-principle simulations,” Phys. Rev. E 79, 010201 (2009). https://doi.org/10.1103/PhysRevE.79.010201 10. L. Stanton and M. Murillo, “Unified description of linear screening in dense plasmas,” Phys. Rev. E 91, 033104 (2015). https://doi.org/10.1103/PhysRevE.91.033104 11. W. Wilson, L. Haggmark, and J. Biersack, “Calculations of nuclear stopping, ranges, and straggling in the low-energy region,” Phys. Rev. B 15, 2458 (1977). https://doi.org/10.1103/PhysRevB.15.2458 we choose to compare the widely used Yukawa potential, which accounts for screening by linearly perturbing around a uniform density in the long-wavelength (Thomas–Fermi) limit, a potential constructed from a neutral pseudo-atom (NPA) approach, 12–15 12. L. Harbour, M. Dharma-wardana, D. D. Klug, and L. J. Lewis, “Pair potentials for warm dense matter and their application to x-ray Thomson scattering in aluminum and beryllium,” Phys. Rev. E 94, 053211 (2016). https://doi.org/10.1103/PhysRevE.94.053211 13. M. Dharma-wardana, “Electron-ion and ion-ion potentials for modeling warm dense matter: Applications to laser-heated or shock-compressed Al and Si,” Phys. Rev. E 86, 036407 (2012). https://doi.org/10.1103/PhysRevE.86.036407 14. F. Perrot and M. Dharma-Wardana, “Equation of state and transport properties of an interacting multispecies plasma: Application to a multiply ionized al plasma,” Phys. Rev. E 52, 5352 (1995). https://doi.org/10.1103/PhysRevE.52.5352 15. L. Harbour, G. Förster, M. Dharma-wardana, and L. J. Lewis, “Ion-ion dynamic structure factor, acoustic modes, and equation of state of two-temperature warm dense aluminum,” Phys. Rev. E 97, 043210 (2018). https://doi.org/10.1103/PhysRevE.97.043210 and the optimal force-matched RPP that is constructed directly from KS-MD simulation data.

Each of the models we chose impacts our physics understanding and has clear computational consequences. For example, success of the Yukawa model reveals the insensitivity to choices in the pseudopotential and screening function and allows for the largest-scale simulations. Large improvements are expected from the NPA model, which makes many fewer assumptions with a modest cost of pre-computing and tabulating forces. (See the Appendix for more details on the NPA model.) The force-matched RPP requires KS-MD data and is therefore the most expensive to produce, but it reveals the limitations of RPPs themselves since they are by definition the optimal RPP.

Using multiple metrics of comparison between RPP-MD and KS-MD including the relative force error, ion–ion equilibrium radial distribution function g (r), Einstein frequency, power spectrum, and the self-diffusion transport coefficient, the accuracy of each RPP model is analyzed. By simulating disparate elements, namely, an alkali metal, multiple transition metals, a halogen, a nonmetal, and a noble gas, we see that force-matched RPPs are valid for simulating dense plasmas at temperatures above fractions of an eV and beyond. We find that for all cases except for low temperature carbon, force-matched RPPs accurately describe the results obtained from KS-MD to within a few percent. By contrast, the Yukawa model appears to systematically fail at describing results from KS-MD at low temperatures for the conditions studied here validating the need for alternate models such as force-matching and NPA approaches at these conditions.

Mar 20, 2021

Real-time monitoring tool speeds up advanced nuclear reactor development

Posted by in category: nuclear energy

Across the nation, environmentally minded scientists and engineers are leading a new generation of nuclear reactor designs. They see nuclear power as a clean, carbon-free energy source along with hydropower, wind, and solar.

Mar 16, 2021

Magnetic Confinement of an Ultracold Neutral Plasma

Posted by in category: nuclear energy

O,.o imagine cold plasma fusion reactors: D.


Researchers have demonstrated that an ultracold neutral plasma can be magnetically confined, paving the way toward experiments that simulate its hot astrophysical counterparts.

Mar 5, 2021

Old Assumption Invalidated: Controlling Fusion Plasma and Plasma Turbulence

Posted by in categories: futurism, nuclear energy

After his PhD thesis invalidates an old assumption, Norman Cao wonders what’s next.

“What are some challenges in controlling plasma and what are your solutions? What is the most effective type of fusion device? What are some difficulties in sustaining fusion conditions? What are some obstacles to receiving fusion funding?”

For the past four years, graduate student Norman Cao ’15 PhD ’20 has been the Plasma Science and Fusion Center’s (PSFC’s) go-to “answer man,” replying to questions like these emailed by students and members of the general public interested in getting a deeper understanding of fusion and its potential as a future energy source.

Feb 28, 2021

Supercomputer-Powered Machine Learning Supports Fusion Energy Reactor Design

Posted by in categories: nuclear energy, particle physics, robotics/AI, supercomputing

Energy researchers have been reaching for the stars for decades in their attempt to artificially recreate a stable fusion energy reactor. If successful, such a reactor would revolutionize the world’s energy supply overnight, providing low-radioactivity, zero-carbon, high-yield power – but to date, it has proved extraordinarily challenging to stabilize. Now, scientists are leveraging supercomputing power from two national labs to help fine-tune elements of fusion reactor designs for test runs.

In experimental fusion reactors, magnetic, donut-shaped devices called “tokamaks” are used to keep the plasma contained: in a sort of high-stakes game of Operation, if the plasma touches the sides of the reactor, the reaction falters and the reactor itself could be severely damaged. Meanwhile, a divertor funnels excess heat from the vacuum.

In France, scientists are building the world’s largest fusion reactor: a 500-megawatt experiment called ITER that is scheduled to begin trial operation in 2025. The researchers here were interested in estimating ITER’s heat-load width: that is, the area along the divertor that can withstand extraordinarily hot particles repeatedly bombarding it.

Feb 24, 2021

Antimatter hydrogen has the same quantum quirk as normal hydrogen

Posted by in categories: nuclear energy, particle physics, quantum physics

O.,.o Could make a semi renewable fusion reactor or propulsion system.


Atoms of antihydrogen are affected by the Lamb shift, which results from transient particles appearing and disappearing.

Page 76 of 134First7374757677787980Last