Toggle light / dark theme

“Get Out of My Head!”

For now, the phrase “Get out of my head,” is a lighthearted joke uttered when someone shares the same thought as a friend or colleague. But thanks to research in telepathic communications and computer technology by a team from the University of Washington, it could become a literal directive in the future.

Or, perhaps you’ll want to invite someone into your mind to help you solve a tricky problem. After all, two (or three) heads are better than one.

Hailed as a pioneer by Photonics Media for his previous discoveries of supercontinuum and Cr tunable lasers, City College of New York Distinguished Professor of Science and Engineering Robert R. Alfano and his research team are claiming another breakthrough with a new super-class of photons dubbed “Majorana photons.” They could lead to enhanced information on quantum-level transition and imaging of the brain and its working.

Alfano’s group based its research on the fact that photons, while possessing salient properties of , wavelength, coherence and spatial modes, take on several forms. “Photons are amazing and are all not the same,” Alfano says.

Their focus “was to use a special super-form of photons, which process the entanglement twists of both polarizations and the wavefront … and would propagate deeper in brain tissues, microtubules and neuron cells, giving more fundamental information of the brain than the conventional forms.”

Hallucinations are spooky and, fortunately, fairly rare. But, a new study suggests, the real question isn’t so much why some people occasionally experience them. It’s why all of us aren’t hallucinating all the time.

In the study, Stanford University School of Medicine neuroscientists stimulated nerve cells in the visual cortex of to induce an illusory image in the animals’ minds. The scientists needed to stimulate a surprisingly small number of , or neurons, in order to generate the perception, which caused the mice to behave in a particular way.

“Back in 2012, we had described the ability to control the activity of individually selected neurons in an awake, alert animal,” said Karl Deisseroth, MD, Ph.D., professor of bioengineering and of psychiatry and behavioral sciences. “Now, for the first time, we’ve been able to advance this capability to control multiple individually specified cells at once, and make an animal perceive something specific that in fact is not really there—and behave accordingly.”

Dr. Wim Melis from the University of Greenwich is working on deconstructing and reconstructing audio signals with extremely high accuracy.

Audio is captured and, from there, converted into a spiking signal—the type the uses. This is then fed into the brain and reconstructed as a 90–100 percent replica of the original sound.

Current technologies, known as , only achieve a fraction of this. They do the work of damaged parts of the inner ear (cochlea) to provide sound signals to the brain, whereas hearing aids make sounds louder.

The three-hour event was part marketing spectacle and part dry technical explainer. Musk and his team members described the brain-machine interface design they’re betting on, which will employ dozens of thin wires to collect signals in the brain, and which they want to try out on paralyzed people soon, so they can type with their minds. Their eventual aim is to connect those wires to a thought transmitter which tucks behind your ear like a hearing aid.


Well, it’s pretty cool. It seemed like maybe it will work the way they want down the road, but it probably doesn’t work that way now. A couple of years ago, when I heard he was working with a neural interface, I said I would be there in a heartbeat. I was joking, but it’s interesting to think about what I am going to do when I get explanted. I am coming up on my five years. Then the FDA says my implants may have to come out. Neuralink talked about longevity of the implant and also a large number of electrodes. I always say I wish they had put more electrodes into me.

Basically, the more electrodes you have, the more neurons you record from, so I would imagine higher-degree tasks would be easier. I am limited to thinking about my right arm and hand. I thought it would be good to have more control. I always want to play more video games.

I was going to school at Penn State, Fayette, for nanofabrication, so I didn’t have a job, I was in school.

Pohoiki Beach appears to be step two of Intel’s process-architecture-optimization development model. Step three, a larger integration of Loihi chips to be called Pohoiki Springs, is scheduled to debut later this year. Neuromorphic design is still in a research phase, but this and similar projects from competitors such as IBM and Samsung should break ground for eventual commoditization and commercial use.


The new Pohoiki Beach builds on the 2017 success of Intel’s Loihi NPU.

Scientists believe even moderate amounts of exercise can slow cognitive decline in people at risk of developing Alzheimer’s disease.

A study published in the journal JAMA Neurology found a total of around 8,900 steps per day appeared to slow rates of cognitive decline and brain volume loss in people who were at high risk. The individuals were considered at risk because of the levels of amyloid beta—a protein thought to play a role in Alzheimer’s— in their brain.

Dr. Jasmeer Chhatwal, Assistant Professor at Harvard Medical School and co-author of the research, told Newsweek: “These results suggest that very achievable levels of physical activity may be protective in those at high risk of cognitive decline and that this effect can be augmented further by lowering vascular risk.” Vascular risk factors include high blood pressure, obesity, smoking, diabetes, he explained.

My mission is to drastically improve your life by helping you break bad habits, build and keep new healthy habits to make you the best version of yourself. I read the books and do all the research and share my findings with you!

This video is an interview of Dr. Aubrey de Grey @ SENS on July 17, 2019. My wife, Lauren Nally, was our camerawoman.

- Please consider a donation so I can continue to keep my YouTube ads off: My Bitcoin Cash (BCH) address: qr9gcfv92pzwfwa5hj9sqk3ptcnr5jss2g78n7w6f2 or https://www.paypal.me/BrentNally
- Please consider a donation to SENS: https://www.sens.org/

SHOW NOTES:

Scientists have produced what looks to be the most detailed magnetic resonance imaging (MRI) scan ever taken of the human brain anatomy, and are sharing their data with the public.

Thanks to an anonymous deceased patient whose brain was donated to science – and a gargantuan 100 hours of scanning with one of the most advanced MRI machines – the world now has an unprecedented view of the structures that make thought itself possible.

In a new study led by neuroimaging scientist Brian L. Edlow from Massachusetts General Hospital, researchers describe how they recorded their ultra-high resolution MRI dataset of the ex vivo specimen, offering a never-before-seen view of the “three-dimensional neuroanatomy of the human brain”.