Blog

Archive for the ‘nanotechnology’ category: Page 249

Sep 19, 2016

Part Nano-Tech, Part Living Cells: Scientists Build A First-Ever Artificial Kidney

Posted by in categories: biotech/medical, computing, nanotechnology

Scientists at Vanderbilt University have developed a first-ever implantable artificial kidney. The artificial kidney contains a microchip filter and living kidney cells that can function using the patient’s heart, and this bio-synthetic kidney acts like the real organ, removing salt, water and waste products to keep patients with kidney failure from relying on dialysis.

The key to this new development is a breakthrough in the microchip itself, which uses silicon nanotechnology. “[Silicon nanotechnology] uses the same processes that were developed by the microelectronics industry for computers,” said Dr. William H. Fissell IV, who led the team that developed the device.

Continue reading “Part Nano-Tech, Part Living Cells: Scientists Build A First-Ever Artificial Kidney” »

Sep 18, 2016

Mind-Controlled Nanobots Used to Release Chemicals in Living Cockroaches

Posted by in categories: biotech/medical, nanotechnology, neuroscience, robotics/AI

This is wild: a team of Israeli scientists developed a contraption that uses a person’s brain waves to remotely control DNA-based nanorobots — while the nanobots were inside a living cockroach. When prompted by a human thought, the clam shell-like robots opened up, revealing a drug-like molecule that tweaked the physiology of the cockroach’s cells.

Though “merely a demonstration and proof of concept,” the technology represents a new era of brain-nanomachine interfaces that links a person’s mental state to bioactive payloads such as drugs. Future techniques that build upon this prototype could be helpful for schizophrenia, depression or other mental disorders, in that the drugs only activate when a patient’s brain waves show signs of abnormality.

Talk about the power of positive thinking!

Continue reading “Mind-Controlled Nanobots Used to Release Chemicals in Living Cockroaches” »

Sep 16, 2016

VIDEO: Self-replicating machines and galactic supremacy — Looking at von Neumann probes

Posted by in categories: biotech/medical, nanotechnology, space travel

A look at the concept of Self-Replicating Machines, Universal Assemblers, von Neumann Probes, Grey Goo, and Berserkers. While we will discuss the basic concept and some on-Earth applications like Medical Nanotechnology our focus will be on space exploration and colonization aspects.

Watch More Videos From Isaac Arthur

Continue reading “VIDEO: Self-replicating machines and galactic supremacy — Looking at von Neumann probes” »

Sep 15, 2016

Verily, Alphabet and Google Look to Cure Diabetes – With Nanobots?

Posted by in categories: biotech/medical, nanotechnology

Another example where big tech and biology are blurring the lines.


Sanofil is a target of Verily, an Alphabet Division (Google 2.0) – and they may have a nifty nanobot cure for diabetes.

Read more

Sep 15, 2016

Elon Musk has some really strange ideas about connecting computers to your brain

Posted by in categories: computing, Elon Musk, nanotechnology, neuroscience, robotics/AI

This is not that far fetch especially when we have seen DARPA’s efforts around BMI, the nanobot technology being experimented on to enable BMI, stent technology as well that is being looked at for BMI, etc. which all leads us into the concept of superhumans.


“Humans are so slow” says Elon Musk, so let’s become AI-human symbiotes instead.

Read more

Sep 15, 2016

Carbon-coated iron catalyst structure could lead to more-active fuel cells

Posted by in categories: nanotechnology, particle physics, transportation

Abstract: Fuel cells have long held promise as power sources, but low efficiency has created obstacles to realizing that promise. Researchers at the University of Illinois and collaborators have identified the active form of an iron-containing catalyst for the trickiest part of the process: reducing oxygen gas, which has two oxygen atoms, so that it can break apart and combine with ionized hydrogen to make water. The finding could help researchers refine better catalysts, making fuel cells a more energy- and cost-efficient option for powering vehicles and other applications.

Led by U. of I. chemistry professor Andrew Gewirth, the researchers published their work in the journal Nature Communications.

Iron-based catalysts for oxygen reduction are an abundant, inexpensive alternative to catalysts containing precious metals, which are expensive and can degrade. However, the process for making iron-containing catalysts yields a mixture of different compounds containing iron, nitrogen and carbon. Since the various compounds are difficult to separate, exactly which form or forms behave as the active catalyst has remained a mystery to researchers. This has made it difficult to refine or improve the catalyst.

Read more

Sep 15, 2016

“Hairy” Nanorods Offer Simpler Production Process

Posted by in categories: materials, nanotechnology

Georgia Tech researchers have developed a new strategy for crafting one-dimensional cellulose nanorods using a wide range of precursor materials.

Read more

Sep 15, 2016

Meet the nanobots that could combat cancer

Posted by in categories: biotech/medical, nanotechnology

An international team have developed nanobots that travel in the bloodstream and tackle cancer from the inside.

Read more

Sep 15, 2016

Your Thoughts Could Activate a Tiny Robot Inside Your Own Brain

Posted by in categories: health, nanotechnology, neuroscience, robotics/AI

Hmmm.


For the first time, Israeli researchers have developed a system that lets a human use brain waves to control nanobots in a cockroach. How could that help your health?

Read more

Sep 15, 2016

Levitating nanoparticle improves ‘torque sensing’

Posted by in categories: nanotechnology, particle physics, quantum physics

Researchers have levitated a tiny nanodiamond particle with a laser in a vacuum chamber, using the technique for the first time to detect and measure its “torsional vibration,” an advance that could bring new types of sensors and studies in quantum mechanics.

The experiment represents a nanoscale version of the torsion balance used in the classic Cavendish experiment, performed in 1798 by British scientist Henry Cavendish, which determined Newton’s gravitational constant. A bar balancing two lead spheres at either end was suspended on a thin metal wire. Gravity acting on the two weights caused the wire and bar to twist, and this twisting — or torsion — was measured to calculate the gravitational force.

In the new experiment, an oblong-shaped nanodiamond levitated by a laser beam in a vacuum chamber served the same role as the bar, and the laser beam served the same role as the wire in Cavendish’s experiment.

Read more