Toggle light / dark theme

EPFL researchers have used swarms of drones to measure city traffic with unprecedented accuracy and precision. Algorithms are then used to identify sources of traffic jams and recommend solutions to alleviate traffic problems.

Given the wealth of modern technology available—roadside cameras, big-data algorithms, Bluetooth and RFID connections, and smartphones in every pocket—transportation engineers should be able to accurately measure and forecast . However, current tools advance towards the direction of showing the symptom but systematically fail to find the root cause, let alone fix it. Researchers at EPFL utilize a monitoring tool that overcomes many problems using drones.

“They provide excellent visibility, can cover large areas and are relatively affordable. What’s more, they offer greater precision than GPS technology and eliminate the behavioral biases that occur when people know they’re being watched. And we use drones in a way that protects people’s identities,” says Manos Barmpounakis, a post-doc researcher at EPFL’s Urban Transport Systems Laboratory (LUTS).

As meetings shifted online during the COVID-19 lockdown, many people found that chattering roommates, garbage trucks and other loud sounds disrupted important conversations.

This experience inspired three University of Washington researchers, who were roommates during the pandemic, to develop better earbuds. To enhance the speaker’s voice and reduce , “ClearBuds” use a novel microphone system and one of the first machine-learning systems to operate in real time and run on a smartphone.

The researchers presented this project June 30 at the ACM International Conference on Mobile Systems, Applications, and Services.

A cutting-edge AI development that could boost smartphone battery life by 30 percent and shave countless kilowatts from energy bills will be unveiled to technology giants. The ground-breaking University of Essex-developed work has been rolled into an app called EOptomizer—which will be demonstrated to expert researchers and designers as well as major manufacturing companies like Nokia and Huawei.

It is hoped the EOptomizer app will be adapted across the industry and help drive down , by making consumers’ goods last longer.

It will do this by using software to dramatically increasing efficiency and reliability in phones, tablets, cars, smart fridges and computers’ batteries—delaying when consumers need to buy carbon-footprint-producing replacements. The event—which takes place in Robinson College, in Cambridge, on 11July—will showcase the impact EOptomizer could have across the globe.

According to the study, smart TV sets surpassed personal computers in 2021. After smartphones, TVs are the most used device to access the Internet — from 37% of users in 2019 to 50% last year. This increase was observed in almost all analyzed demographic strata, mainly among those aged 35 to 44 (59%), users from the North Region of Brazil (45%), and women (51%). In total, 74 million individuals accessed the Internet using their television sets, an increase of 25 million users during last year.

The survey also revealed the prevalence of exclusive smartphone use to access the Internet (64% of users). According to the research, smartphones have been the main Internet access device in Brazil since 2015, and between 2019 and 2021 there was an increase of 6 percentage points in the exclusive use of phones to go online.

The exclusive use of smartphones to access the web is higher among Brazilians living in rural areas (83%), in the Northeast Region of the country (75%), black individuals (65%), those aged 60 years and over (80%), and the poorest segments of the population (89%). Among lower middle class users, access to the Internet exclusively via smartphones increased from 61% in 2019 to 67% in 2021, reaching 51 million people.

View pictures in App save up to 80% data. An illustration of tiny wedge-shaped robots – collectively known as Sensing With Independent Micro-Swimmers (SWIM) – deployed into the ocean miles below a lander on the frozen surface of an ocean world data-image-width=982 data-image-height=726 An illustration of tiny wedge-shaped robots – collectively known as Sensing With Independent Micro-Swimmers (SWIM) – deployed into the ocean miles below a lander on the frozen surface of an ocean world NASA has unveiled a plan to unleash swarms of cellphone-sized robots to hunt for alien life on other planets.

Download State of Survival now: https://statesofsurvival.onelink.me/AcDU/Hacksmith.
Use my code: Hacksmith to redeem an in-game starter pack.
Upgrade to Lv6 and you will automatically enter the giveaway of an Apple iPhone 13 Pro Max.
Terms and conditions for the giveaway: http://bit.ly/3MYKqkj.

CHECKOUT THE LIGHTSABER AUCTION: https://hacksmith.store/en-ca/products/lightsaber.

GET MERCH ► https://www.Hacksmith.store.
Become a Hacksmith member get exclusive perks! ► https://www.youtube.com/channel/UCjgpFI5dU-D1-kh9H1muoxQ/join.

SOCIAL

In the future, a woman with a spinal cord injury could make a full recovery; a baby with a weak heart could pump his own blood. How close are we today to the bold promise of bionics—and could this technology be used to improve normal human functions, as well as to repair us? Join Bill Blakemore, John Donoghue, Jennifer French, Joseph J. Fins, and P. Hunter Peckham at “Better, Stronger, Faster,” part of the Big Ideas Series, as they explore the unfolding future of embedded technology.

This program is part of the Big Ideas Series, made possible with support from the John Templeton Foundation.

Visit our Website: http://www.worldsciencefestival.com/
Like us on Facebook: https://www.facebook.com/worldscience… us on twitter: https://twitter.com/WorldSciFest Original Program date: May 31, 2014 Host: Bill Blakemore Participants: John Donoghue, Jennifer French, Joseph J. Fins, P. Hunter Peckham Re-engineering the anatomy of the “Vitruvian Man” 00:00 Bill Blakemore’s Introduction. 2:06 Participant introductions. 4:27 What is FES? (Functional Electrical Stimulation) 6:06 A demonstration with FES and without. 10:06 How did you test FES systems? 14:16 Jen French the first bionic pioneer. 16:40 What was the journey like from injury to today? 18:35 A live demonstration of FES. 20:40 What is BrainGate? 27:55 What is the potential for this technology? 37:00 When will this technology be publicly available? 40:50 A cell phone app to drink water or stand up? 44:55 Jen French would be the first to try new technology. 50:39 What is the history of altering the human brain? 1:00:57 The move from chemical to electrical medical care. 1:05:40 The challenge of what is going to drive the delivery of care to groups in need. 1:11:36 Can these devices be implanted without surgery? 1:18:13 What field needs the most funding for this to become available to everyone? 1:19:40 What are the numbers of people who can use this technology? 1:23:44 Why can’t we use stem cells to reconnect human spinal tissue? 1:25:37 What is the collaboration level between institutions? 1:29:16 How far away are we from using brain waves to control objects and communicate with each other? 1:30:20
Follow us on twitter: https://twitter.com/WorldSciFest.

Original Program date: May 31, 2014

Transistors are the building blocks of modern electronics, used in everything from televisions to laptops. As transistors have gotten smaller and more compact, so have electronics, which is why your cell phone is a super powerful computer that fits in the palm of your hand.

But there’s a scaling problem: Transistors are now so small that they are difficult to turn off. A key device element is the channel that charge carriers (such as electrons) travel across between electrodes. If that channel gets too short, allow electrons to effectively jump from one side to another even when they shouldn’t.

One way to get past this sizing roadblock is to use layers of 2D materials—which are only a single atom thick—as the channel. Atomically thin channels can help enable even smaller transistors by making it harder for the electrons to jump between electrodes. One well-known example of a 2D material is graphene, whose discoverers won the Nobel Prize in Physics in 2010. But there are other 2D materials, and many believe they are the future of transistors, with the promise of scaling channel thickness down from its current 3D limit of a few nanometers (nm, billionths of a meter) to less than a single nanometer thickness.

Get a year of Nebula and Curiosity Stream for only $14.79 when you sign up at http://www.curiositystream.com/joescott.
We’ve been hearing about the potential of graphene for decades, and yet very few of the big promises have come to pass. But a new aluminum graphene battery design is coming out this year that could charge a phone in less than a minute, and it may be the future of energy storage.

Want to support the channel? Here’s how:

Patreon: http://www.patreon.com/answerswithjoe.
Channel Memberships: https://www.youtube.com/channel/UC-2YHgc363EdcusLIBbgxzg/join.
T-Shirts & Merch: http://www.answerswithjoe.com/store.

Check out my 2nd channel, Joe Scott TMI: