Toggle light / dark theme

Could physics help people with epilepsy? That’s the question tackled by Louis Nemzer, a physicist at Nova Southeastern University, in the September 2019 issue of Physics World magazine, which is out now in print and digital formats.

He thinks that machine learning and real-time monitoring of the brain could give people with epilepsy live information about how much at risk they are of an imminent seizure – and is even developing a smartphone app to help them in daily life.

Elsewhere in the issue, Peter Martin and Tom Scott from the University of Bristol describe how they’ve used drones to map radiation levels at the Chernobyl plant, which you can also read on this website from 2 September, while Kate Brown from the Massachusetts Institute of Technology examines the health impact of Chernobyl fall-out.

Today, Google has revealed the key details that were conspicuously missing from its March announcement of the new Stadia game streaming service. Namely, what the heck we’re going to be able to play, how much we’ll pay, and when we can get started with the exciting new service — which beams high-end console and PC games to any Chrome web browser, Chromecast Ultra TV dongle or Pixel 3 smartphone from beefy new Google servers.

The short version: Google Stadia will launch in November, in 14 different territories including the US, UK and Canada, with at least 31 games from 21 different publishers, for an initial “Founder’s Edition” price of $130 for a hardware starter kit with three months of premium service, and $10 a month afterwards. There’s a separate free tier coming in 2020.

Pre-orders for the “Founder’s Edition” are now open, and I’ll explain what it is in a tad, but there’s something important you should know first.

Light and sound waves are at the basis of energy and signal transport and fundamental to some of our most basic technologies—from cell phones to engines. Scientists, however, have yet to devise a method that allows them to store a wave intact for an indefinite period of time and then direct it toward a desired location on demand. Such a development would greatly facilitate the ability to manipulate waves for a variety of desired uses, including energy harvesting, quantum computing, structural-integrity monitoring, information storage, and more.

In a newly published paper in Science Advances, a group of researchers led by Andrea Alù, founding director of the Photonics Initiative at the Advanced Science Research Center (ASRC) at The Graduate Center, CUNY, and by Massimo Ruzzene, professor of Aeronautics Engineering at Georgia Tech, have experimentally shown that it is possible to efficiently capture and store a wave intact then guide it towards a specific location.

“Our experiment proves that unconventional forms of excitation open new opportunities to gain control over and scattering,” said Alù. “By carefully tailoring the time dependence of the excitation, it is possible to trick the wave to be efficiently stored in a cavity, and then release it on demand towards the desired direction.”

Hacking the iPhone has long been considered a rarified endeavor, undertaken by sophisticated nation-states against only their most high-value targets. But a discovery by a group of Google researchers has turned that notion on its head: For two years, someone has been exploiting a rich collection of iPhone vulnerabilities with anything but restraint or careful targeting. And they’ve indiscriminately hacked thousands of iPhones just by getting them to visit a website.

Of interest?


Contact lenses capable of recording video and taking pictures could one day become a reality after Samsung was granted a patent in the US to develop the technology.

The lenses feature motion sensors, which means that wearers could control devices with their eye movements and potentially give commands to their devices remotely when blinking or using their peripheral vision.

It’s official: Android 10, the next version of the Android operating system, ships 3 September 2019. Well, it’s semi-official, at least.

Mobile site PhoneArena reports that Google’s customer support staff let the date slip to a reader during a text conversation. Expect the operating system, also known as Android Q, to hit Google’s Pixel phones first before rolling out to other models. It will include a range of privacy and security improvements that should keep Android users a little safer.

Researchers from North Carolina State University have developed a technique for measuring speed and distance in indoor environments, which could be used to improve navigation technologies for robots, drones—or pedestrians trying to find their way around an airport. The technique uses a novel combination of Wi-Fi signals and accelerometer technology to track devices in near-real time.

“We call our approach Wi-Fi-assisted Inertial Odometry (WIO),” says Raghav Venkatnarayan, co-corresponding author of a paper on the work and a Ph.D. student at NC State. “WIO uses Wi-Fi as a velocity sensor to accurately track how far something has moved. Think of it as sonar, but using radio waves, rather than sound waves.”

Many devices, such as smartphones, incorporate technology called inertial measurement units (IMUs) to calculate how far a has moved. However, IMUs suffer from large drift errors, meaning that even minor inaccuracies can quickly become exaggerated.

Huawei officially launched yesterday the Ascend 910, the world’s most powerful artificial intelligence (AI) processor, and an all-scenario AI computing framework called MindSpore.

RELATED: HUAWEI UNVEILS ITS LATEST PHONES, THE HUAWEI P30 AND HUAWEI P30 PRO

“We have been making steady progress since we announced our AI strategy in October last year,” said Eric Xu, Huawei’s Rotating Chairman. “Everything is moving forward according to plan, from R&D to product launch. We promised a full-stack, all-scenario AI portfolio. And today we delivered, with the release of Ascend 910 and MindSpore. This also marks a new stage in Huawei’s AI strategy.”

Physicists have found “electron pairing,” a hallmark feature of superconductivity, at temperatures and energies well above the critical threshold where superconductivity happens.

Rice University’s Doug Natelson, co-corresponding author of a paper about the work in this week’s Nature, said the discovery of Cooper pairs of electrons “a bit above the critical temperature won’t be ‘crazy surprising’ to some people. The thing that’s more weird is that it looks like there are two different energy scales. There’s a higher energy scale where the pairs form, and there’s a lower energy scale where they all decide to join hands and act collectively and coherently, the behavior that actually brings about superconductivity.”

Electrical resistance is so common in the modern world that most of us take it for granted that computers, smartphones and warm up during use. That heating happens because electricity doesn’t flow freely through the metal wires and silicon chips inside the devices. Instead, flowing electrons occasionally bump into atoms or one another, and each collision produces a tiny bit of heat.