Toggle light / dark theme

A team working with Roland Fischer, Professor of Inorganic and Metal-Organic Chemistry at the Technical University Munich (TUM) has developed a highly efficient supercapacitor. The basis of the energy storage device is a novel, powerful and also sustainable graphene hybrid material that has comparable performance data to currently utilized batteries.

Usually, energy storage is associated with batteries and accumulators that provide energy for electronic devices. However, in laptops, cameras, cellphones or vehicles, so-called supercapacitors are increasingly installed these days.

Unlike batteries they can quickly store large amounts of energy and put it out just as fast. If, for instance, a train brakes when entering the station, supercapacitors are storing the energy and provide it again when the train needs a lot of energy very quickly while starting up.

The odd, wavy pattern that results from viewing certain phone or computer screens through polarized glasses has led researchers to take a step toward thinner, lighter-weight lenses. Called moiré, the pattern is made by laying one material with opaque and translucent parts at an angle over another material of similar contrast.

A team of researchers from Tokyo University of Agriculture and Technology, TUAT, in Japan have demonstrated that moiré metalenses—tiny, patterned lenses composed of artificial ‘meta’ atoms—can tune along a wider range than previously seen. They published their results on November 23 in Optics Express.

“Metalenses have attracted a lot of interest because they are so thin and lightweight, and could be used in ultra-compact imaging systems, like future smart phones, virtual reality goggles, drones or microbots,” said paper author Kentaro Iwami, associate professor in the TUAT Department of Mechanical Systems Engineering.

Third party data collection — whatever the motivation — has the potential to blur the lines between data privacy and complete identification.

By Shireen Gupta

In March 2020, it was revealed that the Zoom iOS app was sending user data to Facebook unbeknownst to the user. The transaction conspired in a manner where Zoom had implemented the ‘login from Facebook’ button on its iOS app, subsequently involving the Facebook Software Development Kit (SDK) in its iOS platform. The implementation of this feature allowed Facebook to access and extract users’ data from Zoom’s platform. Zoom apologised for this incident, claiming that it did not know of such implications while developing the app, further stating that it had rectified its mistake and fixed the app to remove the Facebook SDK.

As 5G-enabled phones secured their spot as major players in smartphone technology in 2020, access to this latest functionality has been limited to higher-end phones. But things are about to change, as Qualcomm announced today the development of the Snapdragon 480 5G Mobile Platform, which is expected to usher in a new wave of low-cost smartphones featuring cutting-edge features of the latest wireless standard.

5G technology promises higher peak data speeds, very low latency and greater reliability. With the current crop of 5G-enabled phones hovering above $500, the extension of 5G to Qualcomm’s 4-series SoC could pave the way for smartphones priced in the $125-to-$250 range.

The Snapdragon 480 chipset incorporates an X51 modem that supports mmWave and below-6-GHz bandwidths, which ensures compatibility with nearly all 5G networks available today. 5G is not available everywhere, but users in regions offering the technology will see download speeds of 2.5 Gbps and upload speeds up to 660 Mbps.

Experts first floated immunity passports as something to give people who had recovered from COVID-19, but the idea was laden with ethical and logistical concerns — especially since scientists weren’t sure how long coronavirus antibodies lasted after a patient recovered.

But instead of the immune system’s response to COVID-19, this new system built by the medical testing platform startup Healthvana would show whether someone had been vaccinated, likely a more robust indicator that they’re no longer infectious.

After vaccination, you’d be able to take out your smartphone and show you’d been inoculated “to prove to airlines, to prove to schools, to prove to whoever needs it,” Healthvana CEO Ramin Bastani told Bloomberg.

Quantum computer: One of the obstacles for progress in the quest for a working quantum computer has been that the working devices that go into a quantum computer and perform the actual calculations, the qubits, have hitherto been made by universities and in small numbers. But in recent years, a pan-European collaboration, in partnership with French microelectronics leader CEA-Leti, has been exploring everyday transistors—that are present in billions in all our mobile phones—for their use as qubits. The French company Leti makes giant wafers full of devices, and, after measuring, researchers at the Niels Bohr Institute, University of Copenhagen, have found these industrially produced devices to be suitable as a qubit platform capable of moving to the second dimension, a significant step for a working quantum computer. The result is now published in Nature Communications.

Quantum dots in two dimensional array is a leap ahead

One of the key features of the devices is the two-dimensional array of quantum dots. Or more precisely, a two by two lattice of quantum dots. “What we have shown is that we can realize single electron control in every single one of these quantum dots. This is very important for the development of a , because one of the possible ways of making qubits is to use the spin of a single electron. So reaching this goal of controlling the single electrons and doing it in a 2-D array of was very important for us”, says Fabio Ansaloni, former Ph.D. student, now postdoc at center for Quantum Devices, NBI.

No escape.


Checking your notifications on a dive or live-streaming from the reef may not be such a far-off reality thanks to an underwater internet dubbed “Aqua-Fi.”

Developed by researchers at the King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia, Aqua-Fi uses a combination of lasers and existing computing technology to connect devices to the internet more than 30 feet underwater.

With the new technology, researchers were able to place a brief Skype call from a waterproof smartphone, using a standard Wi-Fi signal to connect to an underwater modem.

The advance could cut production costs and reduce the size of microelectronics for sensing and communication.

Light-emitting diodes — LEDs — can do way more than illuminate your living room. These light sources are useful microelectronics too.

Smartphones, for example, can use an LED proximity sensor to determine if you’re holding the phone next to your face (in which case the screen turns off). The LED sends a pulse of light toward your face, and a timer in the phone measures how long it takes that light to reflect back to the phone, a proxy for how close the phone is to your face. LEDs are also handy for distance measurement in autofocus cameras and gesture recognition.

Researchers at Chalmers University of Technology, with collaborators at Technische Universität Berlin, have demonstrated the shortest wavelength ever reported of a vertical-cavity surface-emitting laser (VCSEL). This can pave the way for future use in, for example, disinfection and medical treatment. The results were recently published in the scientific journal ACS Photonics.

“Although there is still much work to be done, especially to enable electrically driven devices, this demonstration provides an important building block for the realization of practical VCSELs covering the major part of the UV spectral range,” says Filip Hjort, Ph.D. student at the Photonics Laboratory at MC2 and first author of the article.

A vertical-cavity surface-emitting lasers (VCSEL) is a compact semiconductor laser and has seen widespread application in, for example, facial recognition in smartphones and for optical communication in data centers. So far, these lasers are only available commercially with red and , but also other visible-emitting VCSELs, that could find applications in adaptive headlamps for cars or projection displays, will soon be commercialized.

Google and its American internet peers are steadily amping up their investment in India, latching onto the only other country with a billion-plus population after getting shut out of China. From Amazon.com Inc. to Facebook Inc., they’re hoping to get in on the ground floor of what they envision as a smartphone and online commerce boom that could eventually create a market to rival the world’s No. 2 economy.


Google investments helped create India’s two youngest technology unicorns: a pair of startups that feed personalized news and entertainment to the world’s fastest-growing smartphone population.