Toggle light / dark theme

Flexible circuits made with silk and graphene

After thousands of years as a highly valuable commodity, silk continues to surprise. Now it may help usher in a whole new direction for microelectronics and computing.

While silk protein has been deployed in designer electronics, its use is currently limited in part because silk fibers are a messy tangle of spaghetti-like strands.

Now, a research team led by scientists at the Department of Energy’s Pacific Northwest National Laboratory has tamed the tangle. They report in the journal Science Advances (“Two-dimensional silk”) that they have achieved a uniform two-dimensional (2D) layer of silk protein fragments, or “fibroins,” on graphene, a carbon-based material useful for its excellent electrical conductivity.

US tests materials for neutrino targets to endure proton bombardment

Fermilab is tackling the extreme conditions generated in neutrino experiments to ensure the success of future research.


“Researchers need to overcome three challenges to make a lasting target: radiation damage, high temperatures and stress from thermal expansion,” remarked the press release.

Nanofibers, incredibly thin threads with exceptional strength and flexibility, are being investigated for their ability to better absorb the shock of the proton beam.

“A nanofiber developed by Fermilab engineer Sujit Bidhar is being researched as a potential target material due to its ability to mitigate thermal shock and be more resistant to radiation damage,” highlighted the press release.

Beyond Tungsten: Scientists Unveil Game-Changing Materials for Fusion Reactors

Can theory and computation methods help the search for the best divertor material and thus contribute to making fusion energy a reality?

Exploring nuclear fusion as a clean energy source reveals a critical need for advanced plasma-facing materials. MARVEL lab researchers identified materials that might withstand fusion’s extreme conditions and proposed alternatives to tungsten, the current choice.

Nuclear fusion and the material challenge.

Quantum Breakthrough: Time Reversal Symmetry Broken at Record High Temperatures

Researchers at Paul Scherrer Institute (PSI), using muon spin rotation at the Swiss Muon Source (SmS), have discovered that a quantum phenomenon called time-reversal symmetry breaking takes place at the surface of the Kagome superconductor RbV₃Sb₅, occurring at temperatures up to 175 K.

This sets a new record for the temperature at which time-reversal symmetry breaking is observed among Kagome systems.

Revolutionary Bioelectronic Gel Brings Living Tissue and Technology Closer Than Ever

A new hydrogel semiconductor from the University of Chicago offers a groundbreaking solution for bioelectronics, blending tissue-like properties with high electronic functionality, enhancing medical device integration and effectiveness.

The perfect material for interfacing electronics with living tissue is soft, stretchable, and as water-loving as the tissue itself, making hydrogels an ideal choice. In contrast, semiconductors, the key materials for bioelectronics such as pacemakers, biosensors, and drug delivery devices, are rigid, brittle, and hydrophobic, making them impossible to dissolve in the way hydrogels have traditionally been built.

Breakthrough in Bioelectronics.

/* */