Toggle light / dark theme

Webb reveals intricate layers of interstellar dust and gas

Once upon a time, the core of a massive star collapsed, creating a shockwave that blasted outward, ripping the star apart as it went. When the shockwave reached the star’s surface, it punched through, generating a brief, intense pulse of X-rays and ultraviolet light that traveled outward into the surrounding space. About 350 years later, that pulse of light has reached interstellar material, illuminating it, warming it, and causing it to glow in infrared light.

NASA’s James Webb Space Telescope has observed that infrared glow, revealing fine details resembling the knots and whorls of wood grain. These observations are allowing astronomers to map the true 3D structure of this interstellar dust and gas (known as the interstellar medium) for the first time.

“We were pretty shocked to see this level of detail,” said Jacob Jencson of Caltech/IPAC in Pasadena, principal investigator of the science program.

Next-generation wearables: Compact cooling pump drops temperatures by 16°F

UCLA materials scientists have developed a compact cooling technology that can pump away heat continuously using layers of flexing thin films. The design is based on the electrocaloric effect, in which an electric field causes a temporary change in a material’s temperature.

In lab experiments, the researchers found that the prototype could lower ambient temperatures of its immediate surroundings by 16 degrees Fahrenheit continuously and up to 25 degrees at the source of the heat after about 30 seconds.

Detailed in a paper published in the journal Science, the approach could be incorporated into wearable technology or portable cooling devices.

GE Aerospace aims for hypersonic flight with its ramjet tech in 2025

GE Aerospace is advancing hypersonic flight with plans to scale up its dual-mode ramjet technology in 2025.

To create a full propulsion system, engineers will improve sophisticated controls and use state-of-the-art materials from jet engine advancements in the upcoming months. This will be a crucial step in reaching flying capabilities.

An sophisticated hypersonic dual-mode ramjet that can handle high-speed, long-range flying across a variety of multi-mission aircraft was unveiled by GE Aerospace in July 2024.

Meet the Ultrathin Conductor Set to Replace Copper in Advanced Electronics

Stanford researchers have uncovered a new material, niobium phosphide, that surpasses copper in electrical conductivity when fashioned into ultrathin films.

This breakthrough could revolutionize the efficiency and performance of future electronics by alleviating the limitations posed by traditional metal wires in nanoscale circuits.

Nanoscale Electronics Challenges

Valence electrons’ role in magnetism of molecular crystals explored

Molecular crystals with conductivity and magnetism, due to their low impurity concentrations, provide valuable insights into valence electrons. They have helped link charge ordering to superconductivity and to explore quantum spin liquids, where electron spins remain disordered even at extremely low temperatures.

Valence electrons with are also expected to exhibit emergent phenomena, making these essential for studying novel material functionalities.

However, the extent to which valence electrons in molecular crystals contribute to magnetism remains unclear, leaving their quantum properties insufficiently explored. To address this, a research team used light to analyze valence electron arrangements, building on studies of superconductors and quantum spin liquids. The findings are published in Physical Review B.

Liquid-like molecular dynamics explain solid-state battery material’s superionic transport abilities

Researchers at Duke University have uncovered the molecular inner workings of a material that could underpin next-generation rechargeable batteries.

Unlike today’s popular lithium-ion batteries that feature a liquid interior, the lithium-based compound is a solid at operational temperatures. But despite its rigid interior structure, charged ions are still able to quickly travel through, making it a “super ionic” material. While researchers have been interested in this compound for some time, they have not known how lithium ions are able to pass through its solid crystalline structure so easily.

The new results answer many standing questions, showing surprising liquid-like behavior at the atomic level. With these insights in hand, as well as the machine learning models used to obtain them, researchers are set to explore similar recipes to solve many of the field’s long-standing challenges.

/* */