Blog

Archive for the ‘materials’ category: Page 51

Feb 26, 2024

3D printed titanium structure shows supernatural strength

Posted by in categories: biotech/medical, materials

A 3D printed ‘metamaterial’ boasting levels of strength for weight not normally seen in nature or manufacturing could change how we make everything from medical implants to aircraft or rocket parts.

RMIT University researchers created the new metamaterial—a term used to describe an with not observed in nature—from common titanium alloy.

But it’s the material’s unique lattice structure design, recently revealed in the journal Advanced Materials, that makes it anything but common: tests show it’s 50% stronger than the next strongest alloy of similar density used in aerospace applications.

Feb 26, 2024

New Research Shows That Something Strange Is Going On in the Butterfly Nebula

Posted by in categories: energy, materials

When red giant stars run out of helium fuel and expel their outer layers to become hot, compact white dwarf stars that are roughly the size of Earth, planetary nebulae are created. As the carbon-enriched shed material is gradually blasted into the interstellar medium, it produces magnificent patterns.

The majority of planetary nebulae are circular, but others, like the well-known “Butterfly Nebula,” have an hourglass or wing-like appearance. These structures are thought to be the consequence of the material expanding into two lobes or “wings” due to the gravitational attraction of a second star circling the parent star of the nebula. The wings develop over time without altering their initial form, much like an expanding balloon.

Feb 26, 2024

Strange Phase of Matter That Only Existed in Theory Turns Out to Be Real

Posted by in categories: materials, particle physics

A strange phase of matter that previously existed purely in the realm of theory has finally been detected in a real material.

It’s known as the Bragg glass phase – a strange, seemingly paradoxical arrangement of atoms in a glass material where the particles are nearly as ordered as those in a perfect crystal. Scientists weren’t even sure Bragg glass existed, but there it was, hiding in an alloy of palladium inserted between layers of terbium and tellurium (PdxErTe3).

The discovery, led by physicist Krishnanand Mallayya of Cornell University and published in Nature Physics, not only sheds light on the way materials can behave but demonstrates a powerful new set of techniques for probing the atomic structures of exotic materials.

Feb 26, 2024

Dracula’s Chivito: New Protoplanetary Disk discovered with Pan-STARRS

Posted by in categories: materials, space

A protoplanetary disk is a disk of dense gas and dust, orbiting a newly formed star. It is assumed that planets are born by the gradual accumulation of material in such a structure, therefore discoveries and studies of protoplanetary disks are essential for improving our understanding of planetary formation processes.

Now, a team of astronomers led by Ciprian T. Berghea of the U.S. Naval Observatory (USNO) in Washington, DC, has discovered a new disk of this type that is associated with an infrared source known as IRAS 23077+6707. The finding was made by inspecting the Pan-STARRS data while working on a variability study of active galactic nuclei (AGN) candidates.

Feb 25, 2024

Ancient mystery solved: Why was Roman concrete so durable?

Posted by in category: materials

How have Roman walls held up so long? Their ancient manufacturing strategy may hold the key to designing concrete that lasts for millennia.

Feb 24, 2024

Percutaneous Continuous Radiofrequency Versus Pulsed Radiofrequency Thermorhizotomy for the Treatment of Neuralgia of the Trigeminal Nerve: A Retrospective Observational Study

Posted by in categories: biotech/medical, materials

Objectives: Trigeminal neuralgia (TN) represents one of the most powerful manifestations of neuropathic pain. The diagnostic criteria, as well as its therapeutic modalities, stand firmly established. The percutaneous radiofrequency thermorhizotomy of the gasserian ganglion and posterior root of the trigeminal nerve stands as a widely employed procedure in this context. In this retrospective observational investigation, we undertake a comparative analysis of patients subjected to treatment employing continuous radiofrequency (C-rF) versus pulsed radiofrequency (P-rF).

Materials and methods: A cohort of 128 patients afflicted with essential neuralgia of the trigeminal nerve, all under the care of the distinguished author (JCA), underwent percutaneous radiofrequency thermorhizotomy between the years 2005 and 2022. They were stratified into two cohorts: Group 1 encompassed 76 patients treated with C-rF, while Group 2 comprised 52 patients subjected to P-rF intervention. All participants met the stringent inclusion and exclusion criteria for TN, with a notable concentration in the V2 and V3 territories accounting for 60% and 45%, respectively. The post-procedural follow-up period exhibited uniformity, spanning from six months to 16 years. Preceding the intervention, all patients uniformly reported a visual analog scale (VAS) score surpassing 6/10. Additionally, everyone had been undergoing pharmacological management, involving a combination of antineuropathic agents and low-potency opioids.

Results: The evaluation of clinical improvement was conducted across three temporal domains: the immediate short-term (less than 30 days), the intermediate-term (less than one year), and the prolonged-term (exceeding one year). In the short term, a noteworthy alleviation of pain, surpassing the 50% threshold, was evident in most patients (94%), a similarity observed in both cohorts (98% in Group 1 and 90% in Group 2). The VAS revealed an average rating of 3/10 for Group 1 and 2/10 for Group 2. Moving to the intermediate term, more than 50% improvement in pain was registered in 89% of patients (92% in Group 1 and 86% in Group 2). The mean VAS score stood at 3.5÷10, marginally higher in Group 2 at 4/10 compared to 3/10 in Group 1. In the final assessment, a 50% or greater reduction in pain was reported by 75% of patients, with no discernible disparity between the two cohorts. Among the cohort, 18 individuals necessitated a subsequent percutaneous intervention (10 in Group 1 and eight in Group 2), while microvascular decompression was performed on six patients (equitably distributed between the two groups), and radiosurgery was administered to three patients in Group 1.

Feb 24, 2024

Breakthrough Pseudo CMOS Transistors for 1000 Times More Efficient Computing

Posted by in categories: computing, materials

Beijing researchers made a pseudo-CMOS architecture for sub-picowatt logic computing that uses self-biased molybdenum disulfide transistors.

As transistors are scaled to smaller dimensions, their static power increases. Combining two-dimensional (2D) channel materials with complementary metal–oxide–semiconductor (CMOS) logic architectures could be an effective solution to this issue because of the excellent field-effect properties of 2D materials. However, 2D materials have limited polarity control. The transistors have a gapped channel that forms a tunable barrier—thus circumventing the polarity control of 2D materials—and exhibit a reverse-saturation current below 1 pA with high reliability and endurance.

They use the devices to make homojunction-loaded inverters with good rail-to-rail operation at a switching threshold voltage of around 0.5 V, a static power of a few picowatts, a dynamic delay time of around 200 µs, a noise margin of more than 90% and a peak voltage gain of 241. They also fabricate fundamental gate circuits on the basis of this pseudo-CMOS configuration by cascading several devices.

Feb 23, 2024

Angle-resolved transport non-reciprocity and spontaneous symmetry breaking in twisted trilayer graphene

Posted by in category: materials

Angle-resolved transport measurements on twisted trilayer graphene reveal evidence for a variety of correlated states with spontaneous symmetry breaking, and offer evidence of momentum polarization.

Feb 23, 2024

Researchers harness 2D magnetic materials for energy-efficient computing

Posted by in categories: computing, materials

MIT researchers used ultrathin van der Waals materials to create an electron magnet that can be switched at room temperature. This type of magnet could be used to build magnetic processors or memories that would consume far less energy than silicon devices.

Feb 23, 2024

Surface Acoustic Wave Cavity Optomechanics with Atomically Thin $h$-BN and mathrmWSe_2$ Single-Photon Emitters

Posted by in categories: materials, quantum physics

In pursuing quantum networking technologies, single-photon emitters in acoustic cavities are a promising pathway that enables the conversion and transfer of quantum information across multiple platforms. The recent discovery of single-photon emitters within two-dimensional (2D) materials, such as WSe and hexagonal boron nitride (h-BN), opens new avenues in exploring such quantum optomechanical phenomena in lower dimensional systems. In this work, we demonstrate the integration of 2D-based single-photon emitters with surface acoustic wave optomechanical cavities and illustrate their potential for radio-frequency electronic control of quantum light emission.

Using simple exfoliation techniques, WSe and h-BN layers are transferred onto surface acoustic wave cavities patterned on lithium niobate—a highly piezoelectric host material. Using electro-optical measurements, we confirm high-quality resonators and cavity-phonon modes that couple to the 2D quantum emitters. Remarkably, the interaction between the 2D emitters and acoustic waves is exceptionally strong owing to the ultrathin nature of the 2D materials and their proximity to the surface waves, verified through quantum spectroscopy measurements. In addition to the radio-frequency acoustic modulation of the emitters in these materials, new physics emerges from the emitter-phonon coupling that leads to new mechanisms for high-speed manipulation of quantum emitters, opening avenues for the generation of entangled-photon pairs.

These advancements set the stage for the exploration of cavity optomechanics with 2D materials. In future experiments, higher frequency resonators will enable studies of the interplay and dynamics between single photons and phonons deep in the quantum regime, a key technology for quantum networking.

Page 51 of 302First4849505152535455Last