Blog

Archive for the ‘materials’ category: Page 2

Oct 12, 2024

Beyond Moore’s Law: Revolutionary Hot Carrier Transistors Overcome Efficiency Challenges

Posted by in categories: computing, materials

Researchers have developed a novel graphene-germanium hot-emitter transistor using a new hot carrier generation mechanism, achieving unprecedented performance. This advancement opens new possibilities for low-power, high-performance multifunctional devices.

Transistors, the fundamental components of integrated circuits, encounter increasing difficulties as their size continues to shrink. To boost circuit performance, it has become essential to develop transistors that operate on innovative principles. Hot carrier transistors, which harness the extra kinetic energy of charge carriers, offer the potential to enhance transistor speed and functionality. However, their effectiveness has been constrained by conventional methods of generating hot carriers.

A team of researchers led by Prof. Chi Liu, Prof. Dongming Sun, and Prof. Huiming Cheng from the Institute of Metal Research (IMR) of the Chinese Academy of Sciences has proposed a novel hot carrier generation mechanism called “stimulated emission of heated carriers (SEHC).” The team has also developed an innovative hot-emitter transistor (HOET), achieving an ultralow sub-threshold swing of less than 1 mV/dec and a peak-to-valley current ratio exceeding 100. The study provides a prototype of a low-power, multifunctional device for the post-Moore era.

Oct 12, 2024

Soft dendritic microparticles with unusual adhesion and structuring properties

Posted by in categories: materials, particle physics

Polymer precipitation under turbulent flows generates soft microparticles with branched dendritic coronas and high adhesive properties.

Oct 12, 2024

Forget ‘Super’ Glue, Scientists Develop New ‘Hyper’ Glue

Posted by in category: materials

The team of chemists and composite materials researchers discovered a broadly applicable method of bonding plastics and synthetic fibers at the molecular level in a procedure called cross-linking. The cross-linking takes effect when the adhesive is exposed to heat or long-wave UV light making strong connections that are both impact-resistant and corrosion-resistant. Even with a minimal amount of cross-linking, the materials are tightly bonded.

“It turns out the adhesive is particularly effective in high-density polyethylene, which is an important plastic used in bottles, piping, geomembranes, plastic lumber, and many other applications,” says Professor Abbas Milani, director of UBC’s Materials and Manufacturing Research Institute, and the lead researcher at the Okanagan node of the Composite Research Network. “In fact, commercially available glues didn’t work at all on these materials, making our discovery an impressive foundation for a wide range of important uses.”

UVic Organic Chemistry Professor Jeremy Wulff, whose team led the design of the new class of cross-linking materials, collaborated with the UBC Survive and Thrive Applied Research to explore how it performed in real-world applications.

Oct 11, 2024

A new plasma-based technological design boosts graphene production by more than 22%

Posted by in categories: materials, sustainability

Harder than a diamond, stronger than steel, as flexible as rubber and lighter than aluminum. These are just some of the properties attributed to graphene. Although this material has sparked great interest in the scientific community in recent years, there is still no cheap and sustainable enough method for its high-quality manufacturing on an industrial scale.

Oct 11, 2024

Flexible Circuits made with Silk and Graphene on the horizon

Posted by in categories: computing, materials

After thousands of years as a highly valuable commodity, silk continues to surprise. Now it may help usher in a whole new direction for microelectronics and computing.

While silk protein has been deployed in designer electronics, its use is currently limited in part because silk fibers are a messy tangle of spaghetti-like strands.

Oct 11, 2024

Watching electrons in motion at 1 quintillionth of a second

Posted by in categories: materials, particle physics

Imagine being able to see electrons — the tiny particles that buzz around atoms — in action, darting and swirling in their frenetic dance. This isn’t science fiction anymore.

Scientists have recently developed a state-of-the-art microscope that allows us to observe these elusive particles moving at unimaginable speeds, revealing the intricate behaviors and interactions that occur at the atomic level.

This innovative technology opens up new frontiers for research in physics and materials science, providing unprecedented insights into the fundamental building blocks of matter.

Oct 10, 2024

Scientists unveil 3rd type of superconductivity with no energy loss

Posted by in categories: energy, materials

A novel type of superconductor that can operate at elevated temperatures has been found by scientists after nearly three decades of research.

Oct 10, 2024

Monolithic 3D integration with 2D materials

Posted by in categories: computing, materials

The monolithic 3D integration of 2D molybdenum disulfide memtransistors and graphene chemitransistors can be used to create near-sensor computing chips with high interconnect density and a vertical separation between tiers of less than 50 nm.

Oct 10, 2024

Aston University develops novel bone cancer therapy which has 99% success rate

Posted by in categories: biotech/medical, materials

Bioactive glasses, a filling material which can bond to tissue and improve the strength of bones and teeth, has been combined with gallium to create a potential treatment for bone cancer.

Tests in labs have found that bioactive glasses doped with the metal have a 99 percent success rate of eliminating cancerous cells and can even regenerate diseased bones.

The research was conducted by a team of Aston University scientists led by Professor Richard Martin who is based in its College of Engineering and Physical Sciences.

Oct 9, 2024

Forget Superconductors: Electrons Living on The Edge Could Unlock Perfect Power

Posted by in categories: energy, materials

This has never been seen before.

Page 2 of 29512345678Last