Blog

Archive for the ‘internet’ category: Page 201

May 17, 2020

Ramsay Malware Steals Sensitive Files from Air-Gapped Computers

Posted by in categories: cybercrime/malcode, internet

https://youtube.com/watch?v=cU2EMupJDZs

Security researchers from ESET recently discovered a new cyber espionage campaign codenamed “Ramsay” which is designed to steal sensitive documents from air‑gapped networks. Ramsay can infect air-gapped computers, collect Word, PDF, and ZIP files in a hidden folder, and then exfiltrate them, researchers said. An air-gap is a security measure to ensure computer networks are physically isolated from the rest of the company’s networks and from potentially unsecured networks like public internet.

“We initially found an instance of Ramsay in VirusTotal. That sample was uploaded from Japan and led us to the discovery of further components and versions of the framework, along with substantial evidence to conclude that this framework is at a developmental stage, with its delivery vectors still undergoing fine-tuning,” the researchers said in an official post.

Continue reading “Ramsay Malware Steals Sensitive Files from Air-Gapped Computers” »

May 17, 2020

Samsung Galaxy A Quantum announced with quantum encryption technology

Posted by in categories: encryption, internet, mobile phones, quantum physics, security

Samsung and South Korean carrier SK Telecom today announced a new 5G smartphone dubbed Galaxy A Quantum.

The Samsung Galaxy A Quantum is the world’s first 5G smartphone equipped with a quantum random number generator (QRNG) chipset, which is developed by SK Telecom’s Switzerland-based subsidiary ID Quantique.

The QRNG chipset is the SKT IDQ S2Q000 and it enhances the security of the phone’s data by using quantum encryption technology to generate random numbers and create unpredictable secure keys.

May 16, 2020

Microwave quantum illumination using a digital receiver

Posted by in categories: biotech/medical, encryption, internet, quantum physics

Quantum illumination uses entangled signal-idler photon pairs to boost the detection efficiency of low-reflectivity objects in environments with bright thermal noise. Its advantage is particularly evident at low signal powers, a promising feature for applications such as noninvasive biomedical scanning or low-power short-range radar. Here, we experimentally investigate the concept of quantum illumination at microwave frequencies. We generate entangled fields to illuminate a room-temperature object at a distance of 1 m in a free-space detection setup. We implement a digital phase-conjugate receiver based on linear quadrature measurements that outperforms a symmetric classical noise radar in the same conditions, despite the entanglement-breaking signal path. Starting from experimental data, we also simulate the case of perfect idler photon number detection, which results in a quantum advantage compared with the relative classical benchmark. Our results highlight the opportunities and challenges in the way toward a first room-temperature application of microwave quantum circuits.

Quantum sensing is well developed for photonic applications (1) in line with other advanced areas of quantum information (25). Quantum optics has been, so far, the most natural and convenient setting for implementing the majority of protocols in quantum communication, cryptography, and metrology (6). The situation is different at longer wavelengths, such as tetrahertz or microwaves, for which the current variety of quantum technologies is more limited and confined to cryogenic environments. With the exception of superconducting quantum processing (7), no microwave quanta are typically used for applications such as sensing and communication. For these tasks, high-energy and low-loss optical and telecom frequency signals represent the first choice and form the communication backbone in the future vision of a hybrid quantum internet (810).

Despite this general picture, there are applications of quantum sensing that are naturally embedded in the microwave regime. This is exactly the case with quantum illumination (QI) (11–17) for its remarkable robustness to background noise, which, at room temperature, amounts to ∼103 thermal quanta per mode at a few gigahertz. In QI, the aim is to detect a low-reflectivity object in the presence of very bright thermal noise. This is accomplished by probing the target with less than one entangled photon per mode, in a stealthy noninvasive fashion, which is impossible to reproduce with classical means. In the Gaussian QI protocol (12), the light is prepared in a two-mode squeezed vacuum state with the signal mode sent to probe the target, while the idler mode is kept at the receiver.

May 15, 2020

Living On The Wireless Edge With AI And 5G

Posted by in categories: internet, robotics/AI

New technology is changing the execution of AI applications.

May 12, 2020

Try to dock with the International Space Station with this SpaceX Crew Dragon simulator

Posted by in categories: internet, space travel

On May 12th, SpaceX released an online simulator that allows internet users to try to dock the company’s newly developed Crew Dragon with the International Space Station.

May 12, 2020

“Quantum radar” uses entangled photons to detect objects

Posted by in categories: computing, internet, particle physics, quantum physics

O,.,o.


The weird world of quantum physics is being harnessed for some fascinating use cases. In the latest example, physicists have developed and demonstrated a “quantum radar” prototype that uses the quantum entanglement phenomenon to detect objects, a system which could eventually outperform conventional radar in some circumstances.

Quantum entanglement describes the bizarre state where two particles can become linked so tightly that they seem to communicate instantly, no matter how far apart they are. Measuring the state of one particle will instantly change the state of the other, hypothetically even if it’s on the other side of the universe. That implies that the information is moving faster than the speed of light, which is thought to be impossible – and yet, it’s clearly and measurably happening. The phenomenon even unnerved Einstein himself, who famously described it as “spooky action at a distance.”

Continue reading “‘Quantum radar’ uses entangled photons to detect objects” »

May 10, 2020

How 5G Will Unleash AI

Posted by in categories: internet, robotics/AI

The next-generation networks will provide major strides in latency, speed and localized access to AI.

May 7, 2020

SpaceX describes exactly how they’re planning to make Starlink satellites less visible from Earth

Posted by in categories: biotech/medical, Elon Musk, engineering, internet, satellites

In 2015, Elon Musk announced that his company, SpaceX, would be deploying satellites to orbit that would provide high-speed broadband internet access to the entire world. Known as Starlink, SpaceX began deploying this constellation in May of 2019 with the launch of the first 60 satellites. As of April 22, a total of 422 satellites have been added to the Starlink constellation, and the response hasn’t been entirely positive.

In addition to fears that we’re adding to the problem of “space junk,” there are also those who’ve expressed concern that Starlink and other constellations could have a negative impact on astronomy. In response, SpaceX recently announced that it will be instituting changes in how the satellites are launched, how they orbit the Earth, and even how reflective they are in order to minimize the impact they have on astronomy.

These changes were the subject of a presentation made during the Decadal Survey on Astronomy and Astrophysics 2020 (Astro2020) hosted by the National Academy of Sciences, Engineering, and Medicine. As part of the Optical Interference from Satellite Constellations Meeting held on Monday, April 27th, the Starlink Panel (which included Musk) presented how the company hopes to minimize light pollution caused by their constellation.

May 7, 2020

State-of-the-art lasers at the micro level

Posted by in categories: internet, mapping, robotics/AI

Many emerging technologies rely on high-quality lasers. Laser-based LiDAR sensors can provide highly accurate scans of three-dimensional spaces, and as such are crucial in applications ranging from autonomous vehicles to geological mapping technologies and emergency response systems. High-quality lasers are also a key part of the high-speed, high-volume data centers that are the backbone of the internet.

When assessing the quality of a , researchers look to the noise in a laser’s frequency, or the number of times the laser’s light wave toggles in each second. Low-quality, “noisy” lasers have more random variations in those toggles, making them useless for systems that are meant to return or convey densely packed information.

At present, lasers with adequately low frequency noise are bulky, expensive and an impractical choice for mass manufacturing. Penn Engineers have set out to solve this problem with a device called a “phase noise filter” that can turn low-cost, compact lasers into those suitable for LiDAR and more.

May 6, 2020

Microsoft offers $100,000 to hack its custom Linux OS

Posted by in categories: cybercrime/malcode, internet

Microsoft is looking for hackers to test its Azure Sphere OS security. It’s a custom-built Linux OS that’s designed for Internet of Things devices. Microsoft will reward security researchers up to $100,000 for vulnerabilities in the OS.