Toggle light / dark theme

Researchers at the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) have developed an innovative method to study ultrafast magnetism in materials. They have shown the generation and application of magnetic field steps, in which a magnetic field is turned on in a matter of picoseconds.

The work has been published in Nature Photonics.

Magnetic fields are fundamental to controlling the magnetization of materials. Under static or slowly varying conditions, a material’s magnetization aligns with the external field like a compass needle. However, entirely new magnetization dynamics emerge when magnetic fields change on timescales—faster than the material’s response time.

In a significant breakthrough that could accelerate the progress of quantum technologies, researchers from the USC

<span class=””>Founded in 1880, the <em>University of Southern California</em> is one of the world’s leading private research universities. It is located in the heart of Los Angeles.</span>

A revolutionary timekeeping breakthrough could be on the horizon as scientists explore the thorium-229 nuclear optical clock, an innovation that may surpass today’s atomic clocks.

By manipulating nuclear quantum states with lasers, researchers are pushing the boundaries of precision and stability in time measurement. Though the journey has spanned decades and major technical hurdles remain, recent experimental milestones have brought this futuristic clock closer to reality. If successful, it could reshape our understanding of time and the universe itself.

Pushing the Limits of Timekeeping.

Scientists at Rady Children’s Institute for Genomic Medicine, and the Department of Neurosciences and Pediatrics at the University of California, San Diego, have made a significant breakthrough in understanding the causes of spina bifida, a serious birth defect affecting thousands of newborns each year.

The new study, published in Nature, reveals critical insights into how this condition develops and opens the door for potential future treatments.

Spina bifida, or meningomyelocele, occurs when the spine and spinal cord do not form properly during early pregnancy. Most often identified during prenatal ultrasound, the condition can lead to lifelong disabilities of the lower limbs and bladder. Newborn sequencing is not routinely used in this condition because causes remain unknown. While researchers have long understood certain environmental risk factors, the new study provides a deeper look into the molecular mechanisms underlying the condition.

While studying the effect of various cytotoxic natural products on different cancer cells, the researchers have discovered a previously unknown mechanism that could point to new therapeutic options in the event of such resistance.

“When the cancer cells come into contact with the active substance, they show a stress reaction. Even at this very early stage, long before they might possibly die, reduced growth signals cause increased levels of polyunsaturated fatty acids to be incorporated into the membrane. This makes them more susceptible to a particular cell death pathway, ferroptosis,” explains the researcher, adding: “The mechanism appears to be universal. This means that it can be observed in all the cancer cells examined and in most cytotoxic agents.” During ferroptosis, polyunsaturated fatty acids in cell membranes are damaged by oxygen radicals. The membranes become porous and the cell dies.

These findings create a basis for the systematic research of innovative treatment strategies for therapy-resistant tumors. Even if conventional chemotherapeutic agents do not kill the cells, they at least trigger a membrane change that can be utilized. “By adding substances that induce ferroptosis, cancer cells could ultimately be eliminated completely,” the author suspects.


One particular challenge in the treatment of cancer is therapy resistance. An international research team has now discovered a mechanism that opens up new treatment strategies for tumors in which conventional chemotherapeutic agents have reached their limits.

“Cytotoxic agents from nature lead to an increased incorporation of polyunsaturated fatty acids into the membrane of cancer cells. This makes them more susceptible to ferroptosis, a type of cell death, at a very early stage,” reports the lead author of the study, which has just been published in the scientific journal Nature Communications.

In the treatment of cancer with chemotherapy, natural substances, such as those from the Chinese “happy tree”, play an important role. They interfere with vital cell processes and thereby damage them. However, a few cancer cells are often able to adapt to these challenges and survive. This is called resistance.

Marking a breakthrough in the field of brain-computer interfaces (BCIs), a team of researchers from UC Berkeley and UC San Francisco has unlocked a way to restore naturalistic speech for people with severe paralysis.

This work solves the long-standing challenge of latency in speech neuroprostheses, the time lag between when a subject attempts to speak and when sound is produced. Using recent advances in artificial intelligence-based modeling, the researchers developed a streaming method that synthesizes brain signals into audible speech in near-real time.

As reported in Nature Neuroscience, this technology represents a critical step toward enabling communication for people who have lost the ability to speak.

Adeno-associated virus (AAV) is a prominent method for delivering genes in vivo. Therapeutic delivery to target cells is achieved through full capsids containing the gene cargo. However, the presence of empty capsids in the AAV drug product can reduce therapeutic effectiveness, necessitating their detection at various stages of the AAV production process. Traditional methods for assessing the AAV empty/full (E/F) ratio are often slow, labor-intensive, and require significant optimization.

Consider a novel, rapid, and high-throughput approach for determining the AAV E/F ratio using Octet® Biolayer Interferometry (BLI) alongside Octet® AAVX Biosensors. This cutting-edge technique evaluates intact viral capsids and is perfect for screening both crude and purified samples, offering a quicker and more efficient workflow with results available in as little as 30 minutes.

Discover the advantages of this innovative method and enhance your AAV workflow by downloading the technical note.

In a remarkable leap forward for science, researchers at CERN have successfully created and observed top quarks—one of nature’s most elusive and unstable particles—inside a lab for the very first time. This breakthrough, announced by the ATLAS team at the Large Hadron Collider (LHC), promises to reshape our understanding of the early Universe and the fundamental makeup of matter.