Blog

Archive for the ‘innovation’ category: Page 17

Jul 9, 2024

Tesla’s Innovative Patent for Cyber Cab Raises Privacy Concerns

Posted by in categories: innovation, privacy, robotics/AI

Herbert Ong Brighter with Herbert.

Jul 6, 2024

Quicker Than Ever: Breakthrough in Terahertz Technology Promises Faster Data Transfer

Posted by in categories: innovation, robotics/AI

Terahertz technology has the potential to address the growing need for faster data transfer rates, but converting terahertz signals to various lower frequencies remains a challenge. Recently, Japanese researchers have devised a novel approach to both up-and down-convert terahertz signals within a waveguide. This is achieved by dynamically altering the waveguide’s conductivity using light, thereby creating a temporal boundary. Their breakthrough could lead to advancements in optoelectronics and improved telecommunications efficiency.

As we plunge deeper into the Information Age, the demand for faster data transmission keeps soaring, accentuated by fast progress in fields like deep learning and robotics. Against this backdrop, more and more scientists are exploring the potential of using terahertz waves to develop high-speed telecommunication technologies.

However, to use the terahertz band efficiently, we need frequency division multiplexing (FDM) techniques to transmit multiple signals simultaneously. Of course, being able to up-convert or down-convert the frequency of a terahertz signal to another arbitrary frequency is a logical prerequisite to FDM. This has unfortunately proven quite difficult with current technologies. The main issue is that terahertz waves are extremely high-frequency waves from the viewpoint of conventional electronics and very low-energy light in the context of optics, exceeding the capabilities of most devices and configurations across both fields. Therefore, a radically different approach will be needed to overcome current limitations.

Jul 5, 2024

A prototype superconducting coil opens the way for more energy-efficient electromagnets

Posted by in categories: innovation, particle physics

How can we advance cutting-edge research but consume less energy? CERN’s scientists are working on innovative solutions, and superconductivity is one of the key ingredients.

A team has recently successfully tested a demonstrator magnet coil that will significantly reduce the power consumption of certain experiments. The coil is made of magnesium diboride (MgB2) , which are used in the high-intensity electrical transfer line that will power the High-Luminosity LHC (HL-LHC), the successor to the LHC. It is mounted in a low-carbon steel magnetic yoke that holds and concentrates the field lines, in a so-called superferric configuration.

This innovative magnet is intended for the SHiP experiment, which is designed to detect very weakly interacting particles and is scheduled to be commissioned in 2031. One of the detector’s two magnets must produce a field of approximately 0.5 tesla. The field is of moderate intensity but must be produced in a huge volume that is 6 meters high and 4 meters wide and deep. A normal-conducting resistive electromagnet would have an electrical power of over one megawatt and, as it would have to operate continuously, its power consumption would be high.

Jul 5, 2024

World’s biggest sodium-ion battery switches on, able to power 12,000 homes

Posted by in category: innovation

The new installation follows a number of breakthroughs with sodium-ion batteries in recent years.

Jul 3, 2024

Unlocking the Secrets of Cellular Communication: New Breakthrough Has Vast Medical Implications

Posted by in categories: biotech/medical, innovation

Researchers have advanced their understanding of how drugs interact with connexin molecules. Connexins create channels that enable direct communication between adjacent cells. Dysfunctions in these channels play a role in neurological and cardiac disorders. This enhanced knowledge of drug binding and action on connexins could aid in developing treatments for these diseases.

Today we use many electronic means to communicate, but sometimes dropping a note in a neighbor’s letter box or leaving a cake on a doorstep is most effective. Cells too have ways to send direct messages to their neighbors.

Adjacent cells can communicate directly through relatively large channels called gap junctions, which allow cells to freely exchange small molecules and ions with each other or with the outside environment. In this way, they can coordinate activities in the tissues or organs that they compose and maintain homeostasis.

Jul 3, 2024

Extremely Large Telescope: World’s Largest Telescope Mirror Will Bring the Stars Closer to Earth

Posted by in categories: innovation, space

Set for completion this decade, the Extremely Large Telescope in Chile will be the largest telescope globally, with a main mirror spanning 39 meters and made from 798 precision-engineered segments. It represents a significant international effort in astronomy.

Currently under construction in the Chilean Atacama Desert, the European Southern Observatory’s Extremely Large Telescope (ESO ’s ELT) is one step closer to completion. German company SCHOTT has successfully delivered the blank for the last of the 949 segments commissioned for the telescope’s primary mirror (M1). With a diameter of more than 39 meters, M1 will be by far the largest mirror ever made for a telescope.

Continue reading “Extremely Large Telescope: World’s Largest Telescope Mirror Will Bring the Stars Closer to Earth” »

Jul 2, 2024

Details of photosynthesis viewed at the atomic level with cryo-microscope

Posted by in categories: innovation, particle physics

The quest to understand the enigma of photosynthesis, how water is involved, and its critical role on Earth has taken a significant leap forward.

A recent breakthrough in visual technology has resulted in the capture of high-resolution images beyond any achieved before, shedding never-before-seen light on this essential life process.

Our story begins within the walls of a renowned institution, Umeå University, where diligent researchers embarked on a fascinating journey to understand the positions of hydrogen atoms and water molecules in photosynthesis.

Jul 1, 2024

Increased atmospheric moisture may dampen the ‘seeds’ of hurricanes

Posted by in categories: climatology, innovation

Increased atmospheric moisture may alter critical weather patterns over Africa, making it more difficult for the predecessors of many Atlantic hurricanes to form, according to a new study published this month. The work is published in the Journal of Advances in Modeling Earth Systems.

The research team, led by scientists from the U.S. National Science Foundation National Center for Atmospheric Research (NSF NCAR), used an innovative model that allows for higher-resolution simulations of hurricane formation than ever before. This allowed researchers to study the effects of increased regional moisture over Africa, which is the birthplace of weather systems that later produce hurricanes over the Atlantic.

Past research has suggested that warmer ocean water and a moister atmosphere could cause hurricanes to become more intense with greater amounts of rainfall. But how , which is predicted to increase in a warming climate, may be impacting hurricane formation itself has not been studied in detail until now.

Jul 1, 2024

Robot with lab-grown brain developed in China, performs critical tasks

Posted by in categories: innovation, robotics/AI

Chinese researchers say their innovation could lead to hybrid human-robot intelligence.


Researchers at China’s Tianjin University and the Southern University of Science and Technology have reportedly developed a robot with a lab-grown artificial brain.

Brain-on-chip technology has been used to train the machine to perform various tasks, according to local media.

Continue reading “Robot with lab-grown brain developed in China, performs critical tasks” »

Jun 30, 2024

Video: SpaceX testing chopsticks to catch Super Heavy rocket falling from space

Posted by in categories: innovation, space travel

The ambitious plan involves catching the falling Super Heavy boosters using the launch tower’s “chopstick” arms. This innovative approach aims to revolutionise rocket recovery and enhance the reusability of the company’s Starship system.

Recent footage shared by SpaceX showcases tests of the chopstick mechanism at their Starbase facility in Texas. The company has been observed clamping the tower arms around a portion of a Super Heavy booster to evaluate the system’s parameters.

This testing is crucial for verifying the forces the chopsticks will need to withstand during an actual catch attempt.

Page 17 of 220First1415161718192021Last