Blog

Archive for the ‘information science’ category: Page 94

Feb 10, 2023

A soft robotic tentacle controlled via active cooling

Posted by in categories: biotech/medical, information science, robotics/AI

Robotic systems have become increasingly sophisticated over the past decades, improving both in terms of precision and capabilities. This is gradually facilitating the partial automation of some surgical and medical procedures.

Researchers at Tsinghua University have recently developed a soft robotic tentacle that could potentially be used to improve the efficiency of some standard medical procedures. This tentacle, introduced in IEEE Transactions on Robotics, is controlled through their novel control algorithm, together with the so-called active cooling for , the actuating candidate for the robot.

Continue reading “A soft robotic tentacle controlled via active cooling” »

Feb 9, 2023

A testbed to assess the physical reasoning skills of AI agents

Posted by in categories: information science, robotics/AI

Humans are innately able to reason about the behaviors of different physical objects in their surroundings. These physical reasoning skills are incredibly valuable for solving everyday problems, as they can help us to choose more effective actions to achieve specific goals.

Some computer scientists have been trying to replicate these reasoning abilities in (AI) , to improve their performance on . So far, however, a reliable approach to train and assess the physical reasoning capabilities of AI algorithms has been lacking.

Cheng Xue, Vimukthini Pinto, Chathura Gamage, and colleagues, a team of researchers at the Australian National University, recently introduced Phy-Q, a new designed to fill this gap in the literature. Their testbed, introduced in a paper in Nature Machine Intelligence, includes a series of scenarios that specifically assess an AI agent’s physical reasoning capabilities.

Feb 9, 2023

Bioelectric Networks: Taming the Collective Intelligence of Cells for Regenerative Medicine

Posted by in categories: bioengineering, biotech/medical, genetics, information science, life extension, robotics/AI

Seminar summary: https://foresight.org/summary/bioelectric-networks-taming-th…-medicine/
Program & apply to join: https://foresight.org/biotech-health-extension-program/

Foresight Biotech & Health Extension Meeting sponsored by 100 Plus Capital.

Continue reading “Bioelectric Networks: Taming the Collective Intelligence of Cells for Regenerative Medicine” »

Feb 9, 2023

New Tech Can See People Through Walls Using WiFi

Posted by in categories: information science, internet, mapping, robotics/AI

A team of researchers have come up with a machine learning-assisted way to detect the position of shapes including the poses of humans to an astonishing degree — using only WiFi signals.

In a yet-to-be-peer-reviewed paper, first spotted by Vice, researchers at Carnegie Mellon University came up with a deep learning method of mapping the position of multiple human subjects by analyzing the phase and amplitude of WiFi signals, and processing them using computer vision algorithms.

“The results of the study reveal that our model can estimate the dense pose of multiple subjects, with comparable performance to image-based approaches, by utilizing WiFi signals as the only input,” the team concluded in their paper.

Feb 8, 2023

Researchers Discover a More Flexible Approach to Machine Learning

Posted by in categories: information science, robotics/AI

“Liquid” neural nets, based on a worm’s nervous system, can transform their underlying algorithms on the fly, giving them unprecedented speed and adaptability.

Feb 8, 2023

Using deep learning to detect depression from speech

Posted by in categories: biotech/medical, information science, robotics/AI

Artificial intelligence (AI) tools have achieved promising results on numerous tasks and could soon assist professionals in various settings. In recent years, computer scientists have been exploring the potential of these tools for detecting signs of different physical and psychiatric conditions.

Depression is one of the most widespread psychiatric disorders, affecting approximately 9.5% of American adults every year. Tools that can automatically detect signs of depression might help to reduce suicide rates, as they would allow doctors to promptly identify people in need of psychological support.

Researchers at Jinhua Advanced Research Institute and Harbin University of Science and Technology have recently developed a deep learning algorithm that could detect depression from a person’s speech. This model, introduced in a paper published in Mobile Networks and Applications, was trained to recognize emotions in by analyzing different relevant features.

Feb 8, 2023

Deep learning for quantum sensing

Posted by in categories: information science, quantum physics, robotics/AI

Quantum sensing represents one of the most promising applications of quantum technologies, with the aim of using quantum resources to improve measurement sensitivity. In particular, sensing of optical phases is one of the most investigated problems, considered key to developing mass-produced technological devices.

Optimal usage of quantum sensors requires regular characterization and calibration. In general, such calibration is an extremely complex and resource-intensive task—especially when considering systems for estimating multiple parameters, due to the sheer volume of required measurements as well as the computational time needed to analyze those measurements. Machine-learning algorithms present a powerful tool to address that complexity. The discovery of suitable protocols for algorithm usage is vital for the development of sensors for precise quantum-enhanced measurements.

A particular type of machine-learning algorithm known as “reinforcement learning” (RL) relies on an intelligent agent guided by rewards: Depending on the rewards it receives, it learns to perform the right actions to achieve the desired optimization. The first experimental realizations using RL algorithms for the optimization of quantum problems have been reported only very recently. Most of them still rely on prior knowledge of the model describing the system. What is desirable is instead a completely model-free approach, which is possible when the agent’s reward does not depend on the explicit system model.

Feb 7, 2023

N-Electron Valence Perturbation Theory with Reference Wave Functions from Quantum Computing: Application to the Relative Stability of Hydroxide Anion and Hydroxyl Radical

Posted by in categories: computing, information science, quantum physics

Quantum simulations of the hydroxide anion and hydroxyl radical are reported, employing variational quantum algorithms for near-term quantum devices. The energy of each species is calculated along the dissociation curve, to obtain information about the stability of the molecular species being investigated. It is shown that simulations restricted to valence spaces incorrectly predict the hydroxyl radical to be more stable than the hydroxide anion. Inclusion of dynamical electron correlation from nonvalence orbitals is demonstrated, through the integration of the variational quantum eigensolver and quantum subspace expansion methods in the workflow of N-electron valence perturbation theory, and shown to correctly predict the hydroxide anion to be more stable than the hydroxyl radical, provided that basis sets with diffuse orbitals are also employed.

Feb 7, 2023

A New AI Research From MIT Reduces Variance in Denoising Score-Matching, Improving Image Quality, Stability, and Training Speed in Diffusion Models

Posted by in categories: information science, robotics/AI

Diffusion models have recently produced outstanding results on various generating tasks, including the creation of images, 3D point clouds, and molecular conformers. Ito stochastic differential equations (SDE) are a unified framework that can incorporate these models. The models acquire knowledge of time-dependent score fields through score-matching, which later directs the reverse SDE during generative sampling. Variance-exploding (VE) and variance-preserving (VP) SDE are common diffusion models. EDM offers the finest performance to date by expanding on these compositions. The existing training method for diffusion models can still be enhanced, despite achieving outstanding empirical results.

The Stable Target Field (STF) objective is a generalized variation of the denoising score-matching objective. Particularly, the high volatility of the denoising score matching (DSM) objective’s training targets can result in subpar performance. They divide the score field into three regimes to comprehend the cause of this volatility better. According to their investigation, the phenomenon mostly occurs in the intermediate regime, defined by various modes or data points having a similar impact on the scores. In other words, under this regime, it is still being determined where the noisy samples produced throughout the forward process originated. Figure 1(a) illustrates the differences between the DSM and their proposed STF objectives.

Figure 1: Examples of the DSM objective’s and our suggested STF objective’s contrasts.

Feb 7, 2023

Echolocation could give small robots the ability to find lost people

Posted by in categories: drones, information science, robotics/AI

Scientists and roboticists have long looked at nature for inspiration to develop new features for machines. In this case, researchers from Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland were inspired by bats and other animals that rely on echolocation to design a method that would give small robots that ability to navigate themselves — one that doesn’t need expensive hardware or components too large or too heavy for tiny machines. In fact, according to PopSci, the team only used the integrated audio hardware of an interactive puck robot and built an audio extension deck using cheap mic and speakers for a tiny flying drone that can fit in the palm of your hand.

The system works just like bat echolocation. It was designed to emit sounds across frequencies, which a robot’s microphone then picks up as they bounce off walls. An algorithm the team created then goes to work to analyze sound waves and create a map with the room’s dimensions.

In a paper published in IEEE Robotics and Automation Letters, the researchers said existing “algorithms for active echolocation are less developed and often rely on hardware requirements that are out of reach for small robots.” They also said their “method is model-based, runs in real time and requires no prior calibration or training.” Their solution could give small machines the capability to be sent on search-and-rescue missions or to previously uncharted locations that bigger robots wouldn’t be able to reach. And since the system only needs onboard audio equipment or cheap additional hardware, it has a wide range of potential applications.

Page 94 of 322First9192939495969798Last