Blog

Archive for the ‘information science’ category: Page 85

Mar 27, 2023

Apple acquired a startup using AI to compress videos

Posted by in categories: business, information science, robotics/AI

Apple has quietly acquired a Mountain View-based startup, WaveOne, that was developing AI algorithms for compressing video.

Apple wouldn’t confirm the sale when asked for comment. But WaveOne’s website was shut down around January, and several former employees, including one of WaveOne’s co-founders, now work within Apple’s various machine learning groups.

WaveOne’s former head of sales and business development, Bob Stankosh, announced the sale in a LinkedIn post published a month ago.

Mar 26, 2023

Infinite AI Interns for Everybody

Posted by in categories: information science, physics, robotics/AI

Basically we are nearing if not already in the age of infinity. What this means is that full automation can be realized imagine not needing really to work to survive bit we could thrive and work on harder things like new innovative things. Basically we could automate all work so we could automate the planet to get to year million or year infinity maybe even days or months once realized full automation could lead to more even for physics where one could finally find the theory of everything or even master algorithm. 😀 Really in the age of infinity anything could be possible from solving impossible problems to nearly anything.


These assistants won’t just ease the workload, they’ll unleash a wave of entrepreneurship.

Mar 25, 2023

The best of both worlds: A new algorithm fuses quantum and classical information for high-quality imaging

Posted by in categories: computing, information science, quantum physics

Researchers from Colorado State University and the Colorado School of Mines have thought up a new computational imaging strategy that exploits the best of both the quantum and classical worlds. They developed an efficient and robust algorithm that fuses quantum and classical information for high-quality imaging. The results of their research were published Dec. 21 in Intelligent Computing.

Recently, the quantum properties of light have been exploited to enable super resolution microscopy. While quantum information brings new possibilities, it has its own set of limitations.

The researchers’ approach is based on classical and quantum correlation functions obtained from photon counts, which are collected from quantum emitters illuminated by spatiotemporally structured illumination. Photon counts are processed and converted into signals of increasing order, which contain increasing spatial frequency information. The higher spatial resolution information, however, suffers from a reduced signal-to-noise ratio at increasingly larger correlation orders.

Mar 25, 2023

Shining a light into the ‘black box’ of AI

Posted by in categories: biotech/medical, economics, finance, health, information science, robotics/AI

Researchers from the University of Geneva (UNIGE), the Geneva University Hospitals (HUG), and the National University of Singapore (NUS) have developed a novel method for evaluating the interpretability of artificial intelligence (AI) technologies, opening the door to greater transparency and trust in AI-driven diagnostic and predictive tools. The innovative approach sheds light on the opaque workings of so-called “black box” AI algorithms, helping users understand what influences the results produced by AI and whether the results can be trusted.

This is especially important in situations that have significant impacts on the health and lives of people, such as using AI in . The research carries particular relevance in the context of the forthcoming European Union Artificial Intelligence Act which aims to regulate the development and use of AI within the EU. The findings have recently been published in the journal Nature Machine Intelligence.

Time series data—representing the evolution of information over time—is everywhere: for example in medicine, when recording heart activity with an electrocardiogram (ECG); in the study of earthquakes; tracking weather patterns; or in economics to monitor financial markets. This data can be modeled by AI technologies to build diagnostic or predictive tools.

Mar 23, 2023

How Quantum Computers Break The Internet… Starting Now

Posted by in categories: computing, encryption, information science, internet, mathematics, quantum physics

A quantum computer in the next decade could crack the encryption our society relies on using Shor’s Algorithm. Head to https://brilliant.org/veritasium to start your free 30-day trial, and the first 200 people get 20% off an annual premium subscription.

▀▀▀
A huge thank you to those who helped us understand this complex field and ensure we told this story accurately — Dr. Lorenz Panny, Prof. Serge Fehr, Dr. Dustin Moody, Prof. Benne de Weger, Prof. Tanja Lange, PhD candidate Jelle Vos, Gorjan Alagic, and Jack Hidary.

Continue reading “How Quantum Computers Break The Internet… Starting Now” »

Mar 23, 2023

Here’s a peek into the mathematics of black holes

Posted by in categories: cosmology, information science, mathematics, physics

Just a couple of years earlier, in 1963, New Zealand mathematician Roy Kerr found a solution to Einstein’s equation for a rotating black hole. This was a “game changer for black holes,” Giorgi noted in a public lecture given at the virtual 2022 International Congress of Mathematicians. Rotating black holes were much more realistic astrophysical objects than the non-spinning black holes that Karl Schwarzschild had solved the equations for.

“Physicists really had believed for decades that the black hole region was an artifact of symmetry that was appearing in the mathematical construction of this object but not in the real world,” Giorgi said in the talk. Kerr’s solution helped establish the existence of black holes.

In a nearly 1,000-page paper, Giorgi and colleagues used a type of “proof by contradiction” to show that Kerr black holes that rotate slowly (meaning they have a small angular momentum relative to their mass) are mathematically stable. The technique entails assuming the opposite of the statement to be proved, then discovering an inconsistency. That shows that the assumption is false. The work is currently undergoing peer review. “It’s a long paper, so it’s going to take some time,” Giorgi says.

Mar 22, 2023

Abel Prize: pioneer of ‘smooth’ physics wins top maths award

Posted by in categories: information science, mathematics, physics

Argentinian-born mathematician Luis Caffarelli has won the 2023 Abel Prize — one of the most coveted awards in mathematics — for his work on equations that are important for describing physical phenomena, such as how ice melts and fluids flow. He is the first person born in South America to win the award.

Caffarelli’s results “are technically virtuous, covering many different areas of mathematics and its applications”, says a statement by Helge Holden, a mathematician at the Norwegian University of Science and Technology in Trondheim who chairs the Abel Committee.

The winner says receiving the news was an emotional moment, because “it shows that people have some appreciation for me and for my science”.

Mar 19, 2023

COQUI : A Generative AI Speech Innovation Will Revolutionize This Market

Posted by in categories: information science, quantum physics, robotics/AI

Since the recent announcements of OpenView’s ChatGPT, Google’s Bard, and Baidu’s ChatBot, the industry has been in a frenzy advancing Generative AI products and solutions. Brainy Insights estimates that the generative AI market will grow from USD $8.65 billion in 2022 and reach USD 4188.62 billion by 2032. This translates to over 36% CAGR making generative AI one of the next hottest areas to elevate AI innovations. The software segment will account for the highest revenue share of 65.0% in 2021 and is expected to retain its position over the forecast period.

What is Generative AI?


Generative AI is a form of AI that produce various types of content including text, imagery, audio and synthetic data. The recent buzz around generative AI has been driven by the simplicity of new user interfaces for creating high-quality text, graphics and videos in a matter of seconds. Although not a new technology, the introduction of generative adversarial networks, or GANs which is a type of machine learning algorithm has advanced the innovations in using this form of AI.

Continue reading “COQUI : A Generative AI Speech Innovation Will Revolutionize This Market” »

Mar 17, 2023

#176 Human organoids are new AI frontier; Listening to the big bang through the cosmic microwave background

Posted by in categories: bioengineering, biotech/medical, ethics, information science, robotics/AI

Brainoids — tiny clumps of human brain cells — are being turned into living artificial intelligence machines, capable of carrying out tasks like solving complex equations. The team finds out how these brain organoids compare to normal computer-based AIs, and they explore the ethics of it all.

Sickle cell disease is now curable, thanks to a pioneering trial with CRISPR gene editing. The team shares the story of a woman whose life has been transformed by the treatment.

We can now hear the sound of the afterglow of the big bang, the radiation in the universe known as the cosmic microwave background. The team shares the eerie piece that has been transposed for human ears, named by researchers The Echo of Eternity.

Mar 17, 2023

A soft polymer-based tactile sensor for robotics applications

Posted by in categories: information science, robotics/AI

To effectively tackle everyday tasks, robots should be able to detect the properties and characteristics of objects in their surroundings, so that they can grasp and manipulate them accordingly. Humans naturally achieve this using their sense of touch and roboticists have thus been trying to provide robots with similar tactile sensing capabilities.

A team of researchers at the University of Hong Kong recently developed a new soft tactile sensor that could allow robots to detect different properties of objects that they are grasping. This sensor, presented in a paper pre-published on arXiv, is made up of two layers of weaved optical fibers and a self-calibration algorithm.

“Although there exist many soft and conformable tactile sensors on robotic applications able to decouple the normal force and , the impact of the size of object in contact on the force calibration model has been commonly ignored,” Wentao Chen, Youcan Yan, and their colleagues wrote in their paper.

Page 85 of 322First8283848586878889Last