In February, four computer scientists set out to develop an algorithm for simulating quantum systems.
While devising a new quantum algorithm, four researchers accidentally established a hard limit on the “spooky” phenomenon.
Advancements in the field of robotics are fueled by research, which in turn heavily relies on effective platforms to test algorithms for robot control and navigation. While numerous robotics platforms have been developed over the past decades, most of them have shortcomings that limit their use in research settings.
Researchers at the University of California (UC) Berkeley recently developed Berkeley Humanoid, a new robotic platform that could be used to train and test algorithms for the control of humanoid robots. This new humanoid robot, introduced in a paper posted to the preprint server arXiv, addresses and overcomes some of the limitations of previously introduced robotics research platforms.
“Having conducted several experiments with commercially available robots, we have become aware of some of their weaknesses,” Qiayuan Liao, co-author of the paper, told Tech Xplore. “For instance, some robot hardware is very expensive, while other hardware is not designed especially for learning-based control or for research, which often means that it is ‘fragile,’ easy to break, and hard to maintain and repair.”
The study, published by a multi-institutional team of researchers…
Researchers used D-Wave’s quantum computing technology to explore the relationship between prefrontal brain activity and academic achievement, particularly focusing on the College Scholastic Ability Test (CSAT) scores in South Korea.
The study, published by a multi-institutional team of researchers across Korea in Scientific Reports, relied on functional near-infrared spectroscopy (fNIRS) to measure brain signals during various cognitive tasks and then applied a quantum annealing algorithm to identify patterns correlating with higher academic performance.
The team identified several cognitive tasks that might boost CSAT score — and that could have significant implications for educational strategies and cognitive neuroscience. The use of a quantum computer as a partner in the research process could also be a step towards practical applications of quantum computing in neuroimaging and cognitive assessment.
Organoid intelligence (OI) is an emerging scientific field aiming to create biocomputers where lab-grown brain organoids serve as ‘biological hardware’
In their article, published in Frontiers in Science, Smirnova et al., outline the multidisciplinary strategy needed to pursue this vision: from next-generation organoid and brain-computer interface technologies, to new machine-learning algorithms and big data infrastructures.
https://www.frontiersin.org/journals/.…
Citation:
Smirnova L, Caffo BS, Gracias DH, Huang Q, Morales Pantoja IE, Tang B, et al. (2023) Organoid intelligence(OI): the new frontier in biocomputing and intelligence-in-a-dish. Front. Sci. 1:1017235. doi: 10.3389/fsci.2023.
Recently, computation in memory becomes very hot due to the urgent needs of high computing efficiency in artificial intelligence applications. In contrast to von-neumann architecture, computation in memory technology avoids the data movement between CPU/GPU and memory which could greatly reduce the power consumption. Memristor is one ideal device which could not only store information with multi-bits, but also conduct computing using ohm’s law. To make the best use of the memristor in neuromorphic systems, a memristor-friendly architecture and the software-hardware collaborative design methods are essential, and the key problem is how to utilize the memristor’s analog behavior. We have designed a generic memristor crossbar based architecture for convolutional neural networks and perceptrons, which take full consideration of the analog characteristics of memristors. Furthermore, we have proposed an online learning algorithm for memristor based neuromorphic systems which overcomes the varation of memristor cells and endue the system the ability of reinforcement learning based on memristor’s analog behavior.
Full abstract and speaker details can be found here: https://nus.edu/3cSFD3e.
Register for free for all our upcoming webinars at https://nus.edu/3bcN9pS.
Join Randal Koene, a computational neuroscientist, as he dives into the intricate world of whole brain emulation and mind uploading, while touching on the ethical pillars of AI. In this episode, Koene discusses the importance of equal access to AI, data ownership, and the ethical impact of AI development. He explains the potential future of AGI, how current social and political systems might influence it, and touches on the scientific and philosophical aspects of creating a substrate-independent mind. Koene also elaborates on the differences between human cognition and artificial neural networks, the challenge of translating brain structure to function, and efforts to accelerate neuroscience research through structured challenges.
00:00 Introduction to Randal Koene and Whole Brain Emulation.
00:39 Ethical Considerations in AI Development.
02:20 Challenges of Equal Access and Data Ownership.
03:40 Impact of AGI on Society and Development.
05:58 Understanding Mind Uploading.
06:39 Randall’s Journey into Computational Neuroscience.
08:14 Scientific and Philosophical Aspects of Substrate Independent Minds.
13:07 Brain Function and Memory Processes.
25:34 Whole Brain Emulation: Current Techniques and Challenges.
32:12 The Future of Neuroscience and AI Collaboration.
SingularityNET is a decentralized marketplace for artificial intelligence. We aim to create the world’s global brain with a full-stack AI solution powered by a decentralized protocol.
We gathered the leading minds in machine learning and blockchain to democratize access to AI technology. Now anyone can take advantage of a global network of AI algorithms, services, and agents.
Website: https://singularitynet.io.
Discord: / discord.
Forum: https://community.singularitynet.io.
Telegram: https://t.me/singularitynet.
Twitter: / singularitynet.
Facebook: / singularitynet.io.
Instagram: / singularitynet.io.
Github: https://github.com/singnet.
Linkedin: / singularitynet.
The most recent email you sent was likely encrypted using a tried-and-true method that relies on the idea that even the fastest computer would be unable to efficiently break a gigantic number into factors.
Quantum computers, on the other hand, promise to rapidly crack complex cryptographic systems that a classical computer might never be able to unravel. This promise is based on a quantum factoring algorithm proposed in 1994 by Peter Shor, who is now a professor at MIT.
But while researchers have taken great strides in the last 30 years, scientists have yet to build a quantum computer powerful enough to run Shor’s algorithm.