Blog

Archive for the ‘information science’ category: Page 132

Jun 20, 2022

Google LIMoE — A Step Towards Goal Of A Single AI

Posted by in categories: information science, robotics/AI

Google announced a new technology called LIMoE that it says represents a step toward reaching Google’s goal of an AI architecture called Pathways.

Pathways is an AI architecture that is a single model that can learn to do multiple tasks that are currently accomplished by employing multiple algorithms.

LIMoE is an acronym that stands for Learning Multiple Modalities with One Sparse Mixture-of-Experts Model. It’s a model that processes vision and text together.

Jun 20, 2022

Microsoft Lasers Music into Glass for 1000 Years of Storage

Posted by in categories: food, information science, media & arts, nanotechnology, robotics/AI, security

Philip Glass to release a short silence on the matter.


The music vault is a parallel project to the Global Seed Vault (opens in new tab), which keeps the seeds of today’s trees and plants safe for the future, just in case we need to rebuild agriculture for any reason. The vault is located on the island of Spitsbergen, Norwegian territory, within the Arctic circle. It lacks tectonic activity, is permanently frozen, is high enough above sea level to stay dry even if the polar caps melt, and even if the worst happens, it won’t thaw out fully for 200 years. Just to be on the safe side, the main vault is built 120m into a sandstone mountain, and its security systems are said to be robust. As of June 2021, the seed vault had conserved 1,081,026 different crop samples.

The music is to be stored in a dedicated vault in the same mountain used by the seed vault. The glass used is an inert material, shaped into platters 75mm (3 inches) across and 2mm (less than 1/8th of an inch) thick. A laser encodes data in the glass by creating layers of three-dimensional nanoscale gratings and deformations. Machine learning algorithms read the data back by decoding images and patterns created as polarized light shines through the glass. The silica glass platters are fully resistant to electromagnetic pulses and the most challenging of environmental conditions. It can be baked, boiled, scoured and flooded without degradation of the data written into the glass. Tests to see if it really does last many thousands of years, however, can be assumed to be ongoing.

Continue reading “Microsoft Lasers Music into Glass for 1000 Years of Storage” »

Jun 19, 2022

AI enters archaeology, scientists use algorithms to discover evidence of human use of fire nearly 1 million years ago

Posted by in categories: food, information science, robotics/AI

The use of fire was a key factor in the evolution of Homo sapiens, not only for the creation of more sophisticated tools but also for making food safer, which in turn aided brain development.

To date, only five sites with fire evidence dating back 500,000 years have been found worldwide, including Wonderwerk Caves and Swartkrans in South Africa, Chesowanja in Kenya, Gesher Benot Ya’aqov in Israel, and Cueva Negra in Spain.

Now, a n Israeli research team has used artificial intelligence algorithms to discover a sixth site that shows traces of human fire! The study revealed evidence of human use of fire at a late Paleolithic site in Israel. The research results have been published in the journal PNAS.

Jun 19, 2022

A celebrated AI has learned a new trick: How to do chemistry

Posted by in categories: biotech/medical, chemistry, information science, robotics/AI

Sign in Welcome! Log into your account your username your password Forgot your password? Get help Default Kit Password recovery Recover your password your email A password will be e-mailed to you. HometechA celebrated AI has learned a new…


Artificial intelligence has altered the practise of science by enabling researchers to examine the vast volumes of data generated by current scientific instruments. Using deep learning, it can learn from the data itself and can locate a needle in a million haystacks of information. AI is advancing the development of gene searching, medicine, medication design, and chemical compound synthesis.

Scientists Detect Fastest-Growing Black Hole in the Universe

Continue reading “A celebrated AI has learned a new trick: How to do chemistry” »

Jun 18, 2022

Teaching Physics to AI Makes the Student a Master

Posted by in categories: information science, physics, robotics/AI

Jun 17, 2022

Teaching Physics to AI Can Allow It To Make New Discoveries All on Its Own

Posted by in categories: information science, physics, robotics/AI

Incorporating established physics into neural network algorithms helps them to uncover new insights into material properties

According to researchers at Duke University, incorporating known physics into machine learning algorithms can help the enigmatic black boxes attain new levels of transparency and insight into the characteristics of materials.

Researchers used a sophisticated machine learning algorithm in one of the first efforts of its type to identify the characteristics of a class of engineered materials known as metamaterials and to predict how they interact with electromagnetic fields.

Jun 16, 2022

What is the Hertzbleed computer chip hack and should you be worried?

Posted by in categories: cybercrime/malcode, encryption, information science

A new hack called Hertzbleed can read snippets of data from computer chips remotely and could leave cryptography algorithms vulnerable to attack.

Jun 14, 2022

San Diego drone tech startup raises $165M to build AI pilot

Posted by in categories: drones, information science, mapping, robotics/AI

Shield AI, an artificial intelligence company focusing on drones and other autonomous aircraft, is on a mission to build “the world’s best AI pilot.” To that end, the San Diego startup has raised $90 million in equity and $75 million in debt as part of a Series E fundraising round. The funding values Shield AI at $2.3 billion.

Hivemind employs state-of-the-art algorithms for planning, mapping, and state-estimation to enable drones to execute dynamic flight maneuvers. On aircraft, Hivemind enables full autonomy and is designed to run fully on the edge, disconnected from the cloud, in high-threat GPS and communication-degraded environments.

Jun 13, 2022

Building up new data-storage memory

Posted by in categories: information science, internet, robotics/AI

Scientists from the Institute of Industrial Science at The University of Tokyo fabricated three-dimensional vertically formed field-effect transistors to produce high-density data storage devices by ferroelectric gate insulator and atomic-layer-deposited oxide semiconductor channel. Furthermore, by using antiferroelectric instead of ferroelectric, they found that only a tiny net charge was required to erase data, which leads to more efficient write operations. This work may allow for new, even smaller and more eco-friendly data-storage memory.

While consumer flash drives already boast huge improvements in size, capacity, and affordability over previous computer media formats in terms of storing data, new machine learning and Big Data applications continue to drive demand for innovation. In addition, mobile cloud-enabled devices and future Internet of Things nodes will require that is energy-efficient and small in size. However, current flash memory technologies require relatively large currents to read or write data.

Now, a team of researchers at The University of Tokyo have developed a proof-of-concept 3D stacked memory cell based on ferroelectric and antiferroelectric field-effect transistors (FETs) with atomic-layer-deposited oxide semiconductor channel. These FETs can store ones and zeros in a non-volatile manner, which means they do not require power to be supplied at all times. The vertical device structure increases information density and reduces operation energy needs. Hafnium oxide and indium oxide layers were deposited in a vertical trench structure. Ferroelectric materials have electric dipoles that are most stable when aligned in the same direction. Ferroelectric Hafnium Oxide spontaneously enables the vertical alignment of the dipoles. Information is stored by the degree of polarization in the ferroelectric layer, which can be read by the system owing to changes in electrical resistance.

Jun 12, 2022

Ben Goertzel — Open Ended vs Closed Minded Conceptions of Superintelligence

Posted by in categories: information science, robotics/AI, singularity

Abstract: Superintelligence, the next phase beyond today’s narrow AI and tomorrow’s AGI, almost intrinsically evades our attempts at detailed comprehension. Yet very different perspectives on superintelligence exist today and have concrete influence on thinking about matters ranging from AGI architectures to technology regulation.
One paradigm considers superintelligences as resembling modern deep reinforcement learning systems, obsessively concerned with optimizing particular goal functions. Another considers superintelligences as open-ended, complex evolving systems, ongoingly balancing drives.
toward individuation and radical self-transcendence in a paraconsistent way. In this talk I will argue that the open-ended conception of superintelligence is both more desirable and more realistic, and will discuss how concrete work being done today on projects like OpenCog Hyperon, SingularityNET and Hypercycle potentially paves the way for a path through beneficial decentralized integrative AGI and on to open-ended superintelligence and ultimately the Singularity.

Bio: In May 2007, Goertzel spoke at a Google tech talk about his approach to creating artificial general intelligence. He defines intelligence as the ability to detect patterns in the world and in the agent itself, measurable in terms of emergent behavior of “achieving complex goals in complex environments”. A “baby-like” artificial intelligence is initialized, then trained as an agent in a simulated or virtual world such as Second Life to produce a more powerful intelligence. Knowledge is represented in a network whose nodes and links carry probabilistic truth values as well as “attention values”, with the attention values resembling the weights in a neural network. Several algorithms operate on this network, the central one being a combination of a probabilistic inference engine and a custom version of evolutionary programming.

Continue reading “Ben Goertzel — Open Ended vs Closed Minded Conceptions of Superintelligence” »