Toggle light / dark theme

Summary: While humans share over 95% of their genome with chimpanzees, our brains are far more complex due to differences in gene expression. Research shows that human brain cells, particularly glial cells, exhibit higher levels of upregulated genes, enhancing neural plasticity and development.

Oligodendrocytes, a glial cell type, play a key role by insulating neurons for faster and more efficient signaling. This study underscores that the evolution of human intelligence likely involved coordinated changes across all brain cell types, not just neurons.

Summary: Researchers have developed a Genetic Progression Score (GPS) using artificial intelligence to predict the progression of autoimmune diseases from preclinical symptoms to full disease. The GPS model integrates genetic data and electronic health records to provide personalized risk scores, improving prediction accuracy by 25% to 1,000% over existing models.

This method identifies individuals at higher risk earlier, enabling timely interventions and better disease management. The framework could also be adapted to study other underrepresented diseases, offering a breakthrough in personalized medicine and health equity.

A study from the University of Minnesota Medical School links social stress to accelerated aging, finding that stress damages DNA

DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).

Recent research led by UTHealth Houston scientists has uncovered two genes associated with variants linked to epilepsy, which showed specific traits that make them promising diagnostic biomarkers.

The study is published in Nature Communications.

Led by Dennis Lal, Ph.D., director of the Center for Neurogenetics and associate professor of neurology at McGovern Medical School at UTHealth Houston, the research team analyzed data from 1,386 human brain tissues for somatic variants in the of individuals undergoing . Somatic variants are DNA changes that occur after conception and can only be identified in the brain tissue.

Why it matters

The new study explains a longstanding puzzle in medicine: why do some people who’ve inherited a disease-causing mutation experience fewer symptoms than others with the same mutation? “In many diseases, we’ll see that 90% of people who carry a mutation are sick, but 10% who carry the mutation don’t get sick at all,” says Bogunovic, a scientist who studies children with rare immunological disorders at Columbia University Irving Medical Center.

Enlisting an international team of collaborators, the researchers looked at several families with different genetic disorders affecting their immune systems. In each case, the disease-causing copy was more likely to be active in sick patients and suppressed in healthy relatives who had inherited the same genes.

In a groundbreaking study, scientists have discovered a way to manipulate the very fabric of life by using light to reshape DNA strands. This innovative approach provides new insights into the material properties of chromosomes, unlocking potential advancements in understanding gene expression and developing treatments for genetic diseases.

Chromatin, the material that makes up chromosomes, is a complex structure where long strands of DNA are wrapped tightly around proteins. Despite its compact nature, chromatin must unfurl in certain regions to allow cells to access and replicate genetic information.

Some areas remain rigid and coiled, silencing genes, while others are flexible and accessible, facilitating gene expression. This duality has led scientists to question whether chromatin behaves like a solid, a liquid, or a hybrid of both.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Summary: New research reveals that certain cells inactivate one parent’s copy of a gene, leading to a bias in gene activity that may explain why some individuals with disease-causing mutations remain symptom-free. This selective gene inactivation, known as monoallelic expression, affects about 1 in 20 genes and varies between cell types.

The study shows that in families with genetic disorders, the active copy of a gene often determines disease severity. These findings challenge traditional genetic paradigms and suggest new approaches to diagnosing and treating inherited diseases.