Blog

Archive for the ‘genetics’ category: Page 484

Mar 9, 2016

You can now sequence your entire genome for under $1,000

Posted by in categories: biotech/medical, genetics, health

It wasn’t all that long ago that the first human genome was sequenced – a massive, globally orchestrated scientific undertaking that took years and some US$3 billion to achieve.

Since then, rapid advancements in genetic technology and techniques have seen the cost and time required for genome sequencing drop dramatically, leading to this week’s remarkable announcement: the first whole genome sequencing service for consumers that costs less than $1,000.

At just $999, myGenome, from US-based genetics startup Veritas Genetics, is being billed by its makers as the first practical and affordable way for people to access unparalleled personal data on their individual genetic code. The company claims its personalised service offers an accessible way to keep tabs on your current health, keep you abreast of any potential future issues, and even know what inherited genetics you might pass onto your children.

Continue reading “You can now sequence your entire genome for under $1,000” »

Mar 7, 2016

Newly developed model of DNA sheds light on molecule’s flexibility

Posted by in categories: bioengineering, biotech/medical, computing, genetics, nanotechnology

Knowledge of how DNA folds and bends could offer new perspective on how it is handled within cells while also aiding in the design of DNA-based nano-scale devices, says a biomedical engineer at Texas A&M University whose new motion-based analysis of DNA is providing an accurate representation of the molecule’s flexibility.

The model, which is shedding new light on the physical properties of DNA, was developed by Wonmuk Hwang, associate professor in the university’s Department of Biomedical Engineering, and his Ph.D. student Xiaojing Teng. Hwang uses computer simulation and theoretical analysis to study biomolecules such as DNA that carry out essential functions in the human body. His latest model, which provides a motion-based analysis of DNA is detailed in the scientific journal ACS Nano. The full article can be accessed at http://pubs.acs.org/doi/abs/10.1021/acsnano.5b06863.

In addition to housing the genetic information needed to build and maintain an organism, DNA has some incredibly interesting physical properties that make it ideal for the construction of nanodevices, Hwang notes. For example, the DNA encompassed within the nucleus of one human cell can extend to four feet when stretched out, but thanks to a number of folds, bends and twists, it remains in a space no bigger than one micron – a fraction of the width of a human hair. DNA also is capable of being programmed for self-assembly and disassembly, making it usable for building nano-mechanical devices.

Read more

Mar 7, 2016

Human-skin discovery suggests new anti-aging treatments

Posted by in categories: genetics, life extension

Layers in hairless skin (credit: Madhero88 and M.Komorniczak/Creative Commons)

For the first time, researchers have reported decreases in levels of a key molecule in aging human skin, which could lead to developing new anti-aging treatments and screening new compounds.

Components of a typical mitochondrion (credit: Kelvinsong/Creative Commons)

Continue reading “Human-skin discovery suggests new anti-aging treatments” »

Mar 5, 2016

It’s official: Native Americans and Siberians are cousins

Posted by in category: genetics

After more than a century of speculation, an international group of geneticists has conclusively proven that the Aztecs, Incas, and Iroquois are closely related to the peoples of Altai, the Siberian region that borders China and Mongolia.

Read more

Mar 4, 2016

The Scientific Reason You Love to Travel

Posted by in category: genetics

Your passion for travel may be genetic. Find out how, here.

Read more

Mar 4, 2016

Investigators Use WGS, Mutational Analysis to Characterize Drug-Resistant Salmonella Epidemiology

Posted by in categories: biotech/medical, genetics

The researchers sequenced bacteria samples sourced from all over the world to reconstruct a phylogenetic tree and learn how it evolved to have multidrug resistance.

Read more

Mar 4, 2016

Researcher develops technique for enhancing gene therapy

Posted by in categories: biotech/medical, genetics, neuroscience

Using his knowledge of how genes are organized and repaired in human cells, Dr. Graham Dellaire, Dalhousie Medical School’s Cameron Research Scientist in Cancer Biology, has developed a technique that could make gene therapy more effective and safer to use. His work was recently published in Nucleic Acids Research and Nature.

CRISPR, named 2015’s breakthrough discovery of the year, stands for “Clustered Regularly-Interspaced Short Palindromic Repeats.” It can accurately target and edit DNA, offering the potential to cure genetic diseases and find new treatments for cancer.

To apply CRISPR in non-dividing cells—such as those in muscle and brain tissue—researchers must first make them behave like cells that divide. They do this by turning on a cellular process called homologous recombination, which protects DNA; the recombination allows a cell’s genes to be manipulated and rearranged without the possibility of causing more harm than good.

Read more

Mar 3, 2016

This genetics company claims it just achieved a major milestone in biology — and it could transform personalized medicine

Posted by in categories: biotech/medical, genetics

Veritas Genetics, a Boston-based biotech company co-founded by Harvard geneticist George Church, is claiming it can now sequence your entire genome — the genetic blueprint inside all your cells that makes you who and what you are — for less than $1,000. That price tag includes an interpretation of the results and genetic counseling.

If the claim is true, it would shatter a long-held barrier in genetic medicine.

Reaching the $1,000 genome

Continue reading “This genetics company claims it just achieved a major milestone in biology — and it could transform personalized medicine” »

Feb 29, 2016

Human Babies from CRISPR Pigs

Posted by in categories: bioengineering, biotech/medical, genetics, health

New genetic technologies like CRISPR/Cas9 gene editing and synthetic biology are leading us to entirely new definitions of disease. Now “patients” include people who want children who lack some of their own genes, or have additional ones that they themselves lack. Also among the new patients are people who in the past were too old to have children as well some women who get sick from pregnancy and childbirth, or even the idea of them. Technological advances on the horizon may eventually offer treatment for such conditions.

In February 2015 the British Parliament approved production of “three-parent” children by transferring the nucleus of one woman’s egg into the nucleus-less (“enucleated”) egg of a second woman to avoid the propagation of certain rare “mitochondrial” diseases, Though there were acknowledged risks of the unprecedented procedure (including the possibility of producing novel birth defects), the argument that prevailed was that some mitochondrial diseases are so devastating that it should be tried in the narrowly defined group of prospective mothers carrying defective mitochondria.

Not long afterward, news articles began to appear discussing use of the technique for an entirely different purpose. The procedure’s inventor, the Oregon Health & Science University biologist Dr. Shoukhrat Mitalipov, was now proposing to treat infertility in older women by transferring their egg nuclei into the enucleated eggs of younger women.

Continue reading “Human Babies from CRISPR Pigs” »

Feb 28, 2016

“Genetic Scissors” Can Completely Eliminate HIV From Cells

Posted by in categories: bioengineering, biotech/medical, evolution, genetics

Thanks to the cocktail of drugs that make up antiretroviral therapy, HIV is no longer a death sentence. But there are downsides to antiretroviral therapy—taking the treatment for many years is expensive, increases drug resistance, and could cause adverse reactions in a patient. And, because the virus stays in reservoirs in the body, the disease can continue to progress in patients if they stop taking their medication.

Now a team of German researchers has found an enzyme that can “cut” the viral DNA out of a cell’s genetic code, which could eradicate the virus from a patient’s body altogether. The proof-of-concept study, published this week in Nature Biotechnology and reported by Ars Technica, was done in mice, but the researchers believe that their conclusions show that this DNA-snipping enzyme could be used in clinical practice. And if it can cut HIV’s genetic code out of a patient’s body, the technique could be a cure for the disease.

The researchers created the DNA-snipping enzyme called Brec1 using directed evolution, an engineering technique that mimics proteins’ natural evolution process. They programmed the enzyme to cut DNA on either side of a sequence characteristic of HIV—a difficult task since the DNA of organisms and of the virus itself mutates often. Still, the researchers identified a well-conserved sequence, then they tested how reliably the enzyme could snip out that sequence in cells taken from HIV-positive patients, in bacteria, and in mice infected with the human form of HIV. After a number of tweaks, Brec1 would cut only that sequence of DNA, patching up the cell’s genetic code once the HIV sequence was cleaved out. After 21 weeks, the cells treated with Brec1 showed no signs of HIV.

Read more