Blog

Archive for the ‘genetics’ category: Page 463

Nov 14, 2016

We’ve Figured Out How to Program Living Cells

Posted by in categories: bioengineering, biotech/medical, evolution, genetics

In Brief:

Researchers at MIT have developed an easy-to-use “biological programming language” that allows genetic engineers (or just about anyone) to design biological circuits and “hack” the genomes of living cells.

The evolution of human technology has proceeded in lockstep with the biological evolution of our species. For millions of years we were content with our primitive Oldowan choppers and Acheulean bifaces; in the Neolithic, we started playing with more sophisticated tools, and the Bronze and Iron ages followed in quick succession.

Continue reading “We’ve Figured Out How to Program Living Cells” »

Nov 10, 2016

Computers made of genetic material? Researchers conduct electricity using DNA-based nanowires

Posted by in categories: biotech/medical, computing, genetics, nanotechnology, particle physics

Tinier than the AIDS virus—that is currently the circumference of the smallest transistors. The industry has shrunk the central elements of their computer chips to fourteen nanometers in the last sixty years. Conventional methods, however, are hitting physical boundaries. Researchers around the world are looking for alternatives. One method could be the self-organization of complex components from molecules and atoms. Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Paderborn University have now made an important advance: the physicists conducted a current through gold-plated nanowires, which independently assembled themselves from single DNA strands. Their results have been published in the scientific journal Langmuir.

At first glance, it resembles wormy lines in front of a black background. But what the electron microscope shows up close is that the nanometer-sized structures connect two electrical contacts. Dr. Artur Erbe from the Institute of Ion Beam Physics and Materials Research is pleased about what he sees. “Our measurements have shown that an electrical current is conducted through these tiny wires.” This is not necessarily self-evident, the physicist stresses. We are, after all, dealing with components made of modified DNA. In order to produce the , the researchers combined a long single strand of genetic material with shorter DNA segments through the base pairs to form a stable double strand. Using this method, the structures independently take on the desired form.

“With the help of this approach, which resembles the Japanese paper folding technique origami and is therefore referred to as DNA-origami, we can create tiny patterns,” explains the HZDR researcher. “Extremely small circuits made of molecules and atoms are also conceivable here.” This strategy, which scientists call the “bottom-up” method, aims to turn conventional production of electronic components on its head. “The industry has thus far been using what is known as the ‘top-down’ method. Large portions are cut away from the base material until the desired structure is achieved. Soon this will no longer be possible due to continual miniaturization.” The new approach is instead oriented on nature: molecules that develop complex structures through self-assembling processes.

Continue reading “Computers made of genetic material? Researchers conduct electricity using DNA-based nanowires” »

Nov 9, 2016

Should genetically modified organisms be part of our conservation efforts?

Posted by in categories: bioengineering, biotech/medical, genetics

Genome editing and synthetic biology are giving rise to new forms of life. But do these organisms have conservation value as part of earth’s biodiversity?

Read more

Nov 9, 2016

Changing Cell Behavior Could be Useful for Stem Cell Research, Biofuel Production

Posted by in categories: biotech/medical, food, genetics, sustainability

For example, ordinary baker’s yeast cells normally produce a lot of alcohol, a biofuel, when fed sugar extracted from the edible kernels of corn plants. NetSurgeon designed genetic surgeries that convinced the cells to make more alcohol when fed a type of sugar found in the inedible leaves and stalks.

The research is published in PNAS Early Edition.

Read more

Nov 7, 2016

Viruses Can Be Genetically Modified To Transmit Energy

Posted by in categories: genetics, solar power, sustainability

Viral solar panels could be most efficient ever.

Read more

Nov 7, 2016

2017 SRF Summer Scholars Program

Posted by in categories: bioengineering, biotech/medical, genetics, life extension, neuroscience, policy

SRF Summer Scholars Program opens December 1st!


The SRF Summer Scholars Program offers undergraduate students the opportunity to conduct biomedical research to combat diseases of aging, such as cancer, Alzheimer’s, and Parkinson’s Disease. Under the guidance of a scientific mentor, each Summer Scholar is responsible for his or her own research project in such areas as genetic engineering and stem cell research. The Summer Scholars Program emphasizes development of both laboratory and communication skills to develop well-rounded future scientists, healthcare professionals, and policy makers. Students participating in the program will hone their writing skills via periodic reports, which are designed to emulate text scientists commonly must produce. At the end of the summer, students will have the opportunity to put all of their newly developed communication skills into practice at a student symposium.

Continue reading “2017 SRF Summer Scholars Program” »

Nov 7, 2016

Verge 2021: five years into the future with 10 top leaders

Posted by in categories: biotech/medical, genetics, mobile phones

With the phone, predictions now feel relatively easy. But we’re setting off on our next five years, and we’re looking beyond the phone. What happens next? And what does it mean for how we live in the future? For our anniversary, we asked 10 of the smartest, most interesting, most influential people we know to describe our lives in 2021 — and the many ways technology, culture, science, and transportation will change. We’ll be running these interviews all through November, and they paint an ambitious, dynamic vision of the future.

We’ll discuss how in the near future, many Americans may never drive again. We’ll talk to groundbreaking scientists about CRISPR, a revolutionary method of editing genes that’s already led to incredible breakthroughs. We’ll see how for many employees, technology may make geography irrelevant, and how social media will usher in a new age of social activism. More women will finally find their rightful place in boardrooms, and by 2021, artificial and human intelligence will exist in something called “symbiotic autonomy.”

It’s tempting to look backwards on an anniversary. But The Verge is about looking ahead, and we would much rather spend our fifth birthday imagining the incredible (and occasionally terrifying) promise of the future. We’ve collected some excellent guides to help us along the way — we hope you join us.

Read more

Nov 6, 2016

Memories Can Be Inherited, and Scientists May Have Just Figured out How

Posted by in categories: biotech/medical, genetics

In Brief:

Our life experiences may be passed on to our children and our children’s children — and now scientists report that they have discovered that this inheritance can be turned on or off.

Epigenetics is the study of inherited changes in gene expression…changes that are inherited, but they are not inherent to our DNA. For instance, life experiences, which aren’t directly coded in human DNA, can actually be passed on to children. Studies have shown that survivors of traumatic events may have effects in subsequent generations.

Continue reading “Memories Can Be Inherited, and Scientists May Have Just Figured out How” »

Nov 6, 2016

The Hallmarks of Aging

Posted by in categories: biotech/medical, evolution, genetics, health, life extension

2013 saw the release of one of the most important papers in aging research and one that saw renewed interest and support for the concept of SENS.


Aging is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. This deterioration is the primary risk factor for major human pathologies, including cancer, diabetes, cardiovascular disorders, and neurodegenerative diseases. Aging research has experienced an unprecedented advance over recent years, particularly with the discovery that the rate of aging is controlled, at least to some extent, by genetic pathways and biochemical processes conserved in evolution. This Review enumerates nine tentative hallmarks that represent common denominators of aging in different organisms, with special emphasis on mammalian aging. These hallmarks are: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. A major challenge is to dissect the interconnectedness between the candidate hallmarks and their relative contributions to aging, with the final goal of identifying pharmaceutical targets to improve human health during aging, with minimal side effects.

Read more

Nov 5, 2016

Researchers develop a system for adaptive live imaging of large living organisms

Posted by in categories: biological, genetics, robotics/AI

Light-sheet microscopy is one of the most powerful method for imaging the development and function of whole living organisms. However, achieving high-resolution images with these microscopes requires manual adjustments during imaging. Researchers of the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden together with colleagues at Janelia Research Campus (HHMI) have developed a new kind of light-sheet microscope that can ‘drive’ itself automatically by adapting to the challenging and dynamic optical conditions of large living specimens. This new smart microscope combines a novel hardware design and a smart ‘AutoPilot’ system that can analyze images and automatically adjust and optimize the microscope. This framework enables for the first time long-term adaptive imaging of entire developing embryos and improves the resolution of light-sheet microscopes up to five-fold.

Light sheet microscopy is a novel microscopy technique developed in the last ten years that is uniquely suited to image large . In a light-sheet microscope, a laser light sheet illuminates the sample perpendicularly to the observation along a thin plane within the sample. Out-of-focus and scattered light from other planes—which often impair image quality—is largely avoided because only the observed plane is illuminated.

The long-standing goal of microscopy is to achieve ever-sharper images deep inside of living samples. For light-sheet microscopes this requires to perfectly maintain the careful alignments between imaging and light-sheet illumination planes. Mismatches between these planes arise from the optical variability of living tissues across different locations and over time. Tackling this challenge is essential to acquire the necessary to decipher the biology behind organism development and morphogenesis. “So far, researchers had to sit at their microscope and tweak things manually—our system puts an end to this: it is like a self-driving car: it functions autonomously”, says Loïc Royer, first author of the study. This smart autonomous microscope can in real-time analyze and optimize the spatial relationship between light-sheets and detection planes across the specimen volume.

Read more