Blog

Archive for the ‘genetics’ category: Page 123

May 13, 2023

Researchers Reveal the ‘Pangenome,’ a More Diverse Look at Human DNA

Posted by in categories: biotech/medical, genetics

The new version of the human genome could lead to better diagnostics and treatment of genetic diseases.

May 12, 2023

High-Resolution Image of the Human Retina Reveals Stunning Details

Posted by in category: genetics

High spatial and temporal resolution

The scientists performed all these analyses on organoids that were of different ages and thus at different stages of development. In this way, they were able to create a time series of images and genetic information that describes the entire 39-week development of retinal organoids.

May 11, 2023

These Creatures Have Superpower That Allows Them to Survive Fire

Posted by in category: genetics

Year 2022 These animals have fire resistance which could allow humans to essentially be more fire resistant. I still believe the best gene hack would be a tardigrade essentially because they gave so many survival genes.


Echidnas are among the last mammals on Earth to lay eggs, but that’s not what makes them so miraculous.

May 11, 2023

New gene-edited drug targets bacteria, bringing hope to cancer treatment

Posted by in categories: biotech/medical, genetics

Dr_Microbe/iStock.

To address these concerns, scientists at SNIPR BIOME company have been working on developing a targeted approach to kill harmful bacteria while saving the essential ones precisely.

May 10, 2023

Serine + Vitamin B6: Did It Reduce Homocysteine? (Test #1)

Posted by in categories: biotech/medical, genetics

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Continue reading “Serine + Vitamin B6: Did It Reduce Homocysteine? (Test #1)” »

May 8, 2023

Researchers engineer solution to extend cellular lifespan and slow aging

Posted by in categories: bioengineering, biotech/medical, genetics, life extension

Human lifespan is intricately connected to the aging process of individual cells, and this means that scientists have spent decades trying to unravel the mysteries of cellular aging and exploring methods to slow down the ticking of the aging clock.

Longevity. Technology: In 2020, a group of researchers from the University of California San Diego identified two distinct mechanisms of cellular aging and genetically manipulated them to extend cell lifespan [1]. Now, their research has progressed to employ synthetic biology and gene circuits to delay the deterioration associated with cellular aging [2]. The team’s innovative approach could revolutionize scientific methods of aging prevention and contribute to reprogramming aging pathways in various human cell types.

Publishing in Science, the researchers describe how cells in yeast, plants, animals and humans all contain gene regulatory circuits responsible for several physiological functions, including aging. These gene circuits, akin to electric circuits controlling household devices, can operate in different ways, and the UC San Diego team discovered that cells don’t necessarily age the same way – it all depends on their genetic material and environment. The researchers found that cells can age either through DNA stability decline or mitochondrial decline.

May 8, 2023

Parkinson’s May Be Caused by a Common Aquatic Bacterium

Posted by in categories: biotech/medical, genetics, neuroscience

I suspected both this and alzheimers are bacterial infections.


A common genus of microbe found in wet, boggy environments could play a key role in the development of Parkinson’s disease, by excreting compounds that trigger proteins inside brain cells to form toxic clumps.

The findings, made by a small team of researchers at the University of Helsinki and the University of Eastern Finland, build on the results of an earlier investigation showing that the severity of the neurodegenerative disorder in volunteers increased with concentrations of Desulfovibrio bacterial strains in their feces.

Continue reading “Parkinson’s May Be Caused by a Common Aquatic Bacterium” »

May 7, 2023

Generative AI Helps Design New Proteins

Posted by in categories: genetics, robotics/AI, space

Proteins are made from chains of amino acids that fold into three-dimensional shapes, which in turn dictate protein function. Those shapes evolved over billions of years and are varied and complex, but also limited in number. With a better understanding of how existing proteins fold, researchers have begun to design folding patterns not produced in nature.

But a major challenge, says Kim, has been to imagine folds that are both possible and functional. “It’s been very hard to predict which folds will be real and work in a protein structure,” says Kim, who is also a professor in the departments of molecular genetics and computer science at U of T. “By combining biophysics-based representations of protein structure with diffusion methods from the image generation space, we can begin to address this problem.”

The new system, which the researchers call ProteinSGM, draws from a large set of image-like representations of existing proteins that encode their structure accurately. The researchers feed these images into a generative diffusion model, which gradually adds noise until each image becomes all noise. The model tracks how the images become noisier and then runs the process in reverse, learning how to transform random pixels into clear images that correspond to fully novel proteins.

May 7, 2023

Long telomeres, the endcaps on DNA, not the fountain of youth once thought, and scientists may now know why

Posted by in categories: biotech/medical, genetics, life extension

In a study of 17 people from five families, Johns Hopkins Medicine researchers say they found that ultra-lengthy DNA endcaps called telomeres fail to provide the longevity presumed for such people. Instead, people with long telomeres tend to develop a range of benign and cancerous tumors, as well as the age-related blood condition clonal hematopoiesis.

Reporting in the May 4 issue of the New England Journal of Medicine, the Johns Hopkins researchers say clonal hematopoiesis is common among this long-telomere group, and the blood condition combined with long may help mutations stick around longer in blood cells.

“Our findings challenge the idea that long telomeres protect against aging,” says Mary Armanios, M.D., professor of oncology at the Johns Hopkins Kimmel Cancer Center, and professor of genetic medicine, and genetics, and pathology at the Johns Hopkins University School of Medicine. “Rather than long telomeres protecting against aging, long telomeres allowed cells with mutations that arise with aging to be more durable.”

May 7, 2023

Quantifying Biological Age: Blood Test #3 in 2023

Posted by in categories: biotech/medical, genetics, life extension

Join us on Patreon!
https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Continue reading “Quantifying Biological Age: Blood Test #3 in 2023” »