Blog

Archive for the ‘genetics’ category: Page 102

Aug 10, 2023

Mapping Out What Makes the Heart Tick

Posted by in categories: genetics, mapping

The seemingly basic question of “which genes are important for the heart?” spurred Ramialison and her team to pursue a fuller picture.


A novel atlas reveals region-specific links between structural, mechanical, and genetic properties within the heart.

Aug 10, 2023

The Epigenetic Impact of Cannabis Use During Pregnancy on Child’s Health

Posted by in categories: biotech/medical, food, genetics, health, neuroscience

Specifically, the researchers examined how THC administered through edibles, a common consumption method, influenced epigenetic changes in crucial areas for fetal development, including the placenta, fetal lung, brain, and heart.


In recent years, the popularity and availability of cannabis has grown significantly, with various consumption methods like edibles gaining traction. However, alongside this trend, there has been a worrisome increase in cannabis use among pregnant women. Unfortunately, our understanding of the detailed effects of using cannabis during pregnancy on the developing child remains limited. Because normal fetal development relies on the crucial process of epigenetic regulation and gene expression modification, it has been suggested that studying the molecular changes linked to cannabis exposure during pregnancy could provide important insights.

To gain a better understanding of the effects of cannabis use during pregnancy, researchers from the Oregon Health & Science University (OHSU) conducted a unique preclinical study that focused on investigating the epigenetic impact of THC, the main active component in cannabis, on fetal development and future health outcomes. The study’s findings were published in the journal Clinical Epigenetics.

Continue reading “The Epigenetic Impact of Cannabis Use During Pregnancy on Child’s Health” »

Aug 10, 2023

Unexpected link between pure mathematics and genetics discovered

Posted by in categories: bioengineering, biotech/medical, encryption, evolution, genetics, mathematics

An interdisciplinary team of mathematicians, engineers, physicists, and medical scientists have uncovered an unexpected link between pure mathematics and genetics, that reveals key insights into the structure of neutral mutations and the evolution of organisms.

Number theory, the study of the properties of positive integers, is perhaps the purest form of mathematics. At first sight, it may seem far too abstract to apply to the natural world. In fact, the influential American number theorist Leonard Dickson wrote ‘Thank God that number theory is unsullied by any application.’

And yet, again and again, number theory finds unexpected applications in science and engineering, from leaf angles that (almost) universally follow the Fibonacci sequence, to modern encryption techniques based on factoring prime numbers. Now, researchers have demonstrated an unexpected link between number theory and evolutionary genetics.

Aug 10, 2023

Foreign DNA detection in genome-edited potatoes by high-throughput sequencing

Posted by in categories: biotech/medical, food, genetics

Genome editing is a powerful breeding technique that introduces mutations into specific gene sequences in genomes. For genome editing in higher plants, nucleotides for artificial nuclease (e.g. TALEN or CRISPR-Cas9) are transiently or stably introduced into the plant cells. After the introduction of mutations by artificial nucleases, it is necessary to select lines that do not contain the foreign nucleotides to overcome GMO regulation; however, there is still no widely legally authorized and approved method for detecting foreign genes in genome-edited crops. Recently, k-mer analysis based on next-generation sequencing (NGS) was proposed as a new method for detecting foreign DNA in genome-edited agricultural products. Compared to conventional methods, such as PCR and Southern hybridization, in principle, this method can detect short DNA fragments with high accuracy.

Aug 10, 2023

Small-molecule autocatalysis may have paved the way for the emergence of evolution by natural selection

Posted by in categories: biological, chemistry, evolution, genetics

The discipline of systems chemistry deals with the analysis and synthesis of various autocatalytic systems and is therefore closely related to the study of the origin of life, since it investigates systems that can be considered as a transition between chemical and biological evolution: more complex than simple molecules, but simpler than living cells.

Tibor Gánti described the theory of self-replicating microspheres as early as 1978. These still lacked , but concealed within their membranes an autocatalytic metabolic network of small molecules, isolated (compartmentalized) within their membranes.

As the autocatalytic process takes place, the membrane-building material is also produced, leading to the division of the sphere. This system may appear to be a , and although it lacks genetic material, this can only be verified experimentally. These microspheres can be considered as “infrabiological” , since they do not reach the level of biological organization, but they exceed the complexity of normal chemical reactions.

Aug 9, 2023

Renowned tumor suppressor has prominent role in tissue repair, study finds

Posted by in categories: biotech/medical, genetics

A protein famed among scientists and clinicians for its ability to suppress the development of many types of tumors may just be moonlighting as a cancer fighter, a recent study by researchers at Stanford Medicine found. The study, conducted in laboratory mice, suggests that the protein, p53, instead evolved to promote the repair of tissues and cells after injury.

The surprising finding is like learning that your favorite bit actor is actually an Oscar-winning director who dabbles in performance on the weekends.

“This turns what we thought we knew about p53 on its head,” said Laura Attardi, Ph.D., professor of radiation oncology and of genetics. “We need to consider that p53’s role as a tumor suppressor may be secondary to a more basic role in repairing damage to tissues.”

Aug 9, 2023

Serine + Vitamin B6: No Effect On Homocysteine (Test #2)

Posted by in categories: biotech/medical, genetics, health

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Continue reading “Serine + Vitamin B6: No Effect On Homocysteine (Test #2)” »

Aug 9, 2023

Electrical signals between skin cells may influence melanoma initiation

Posted by in categories: biotech/medical, genetics

The transfer of a neurotransmitter from one type of skin cell to another (melanocytes to keratinocytes) altered electrical activity and promoted melanoma initiation in preclinical models, according to results published in Cancer Discovery, a journal of the American Association for Cancer Research.

Melanoma is a deadly form of skin cancer that develops in melanin-containing skin cells known as melanocytes. An intrinsic feature of melanocytes is their ability to secrete melanin-containing vesicles to surrounding skin cells called keratinocytes to give skin its color.

While approximately half of all melanomas harbor mutations in the BRAF gene, these mutations are present in many benign skin lesions as well.

Aug 8, 2023

How a Common Fungus Can Alter the Lungs to Suit Itself

Posted by in categories: biotech/medical, genetics

There are many microbes in our environment; many are harmless, some perform important functions, and some may pose a threat. Aspergillus fumigatus, for example, is a fungus that can be often be found in soil, as well as decaying organic matter; it has a crucial role in recycling carbon and nitrogen on our planet. A. fumigatus is also widely distributed in the air, so on average, people probably inhale a few hundred spores of A. fumigatus every day. This fungus is highly adaptive, and it can also evade weakened immune defenses in immunocompromised individuals to cause lung infections, called Aspergillosis. There are limited treatment options for this disease, and it’s difficult to treat effectively.

Scientists have now analyzed genetic data from about 250 strains of this fungus, and data from 40 Aspergillosis patients that characterized the lung microbiomes of these individuals. This showed that when people are infected with A. fumigatus, the composition of their lung microbiome begins to change dramatically. The findings have been reported in Nature Communications.

Aug 8, 2023

Genome editing in the spotlight: genetic disorder carriers’ views shape the conversation

Posted by in categories: biotech/medical, genetics

Study explores perspectives on the applications of somatic genome editing.