Blog

Archive for the ‘evolution’ category: Page 132

Apr 21, 2017

Crosswise Summer Experience

Posted by in categories: evolution, transhumanism

An event on #transhumanism at a Christian university in Southern California in June. Looks interesting:


Humanism is “our most sympathetic understanding and treatment of human nature.”

TRANShumanism is “the drive to fundamentally revolutionise what it means to be human by way of technological advancements.”

Continue reading “Crosswise Summer Experience” »

Apr 12, 2017

Octopuses Can Edit Their Own DNA, Which Might Explain Their High Intelligence

Posted by in categories: biotech/medical, evolution, genetics, neuroscience

Octopuses are so clever that they can ignore their genetic programming, in turn slowing down their DNA evolution.

Read more

Apr 3, 2017

Is Zoltan Istvan a Libertarian?

Posted by in categories: biotech/medical, evolution, geopolitics, life extension, transhumanism

This is a fair enough article, though I believe I’m more Libertarian than it paints me. I think a lot of people forget or simply don’t know my book The Transhumanist Wager (how I started my futurist career back in 2009) is known by many as transhumanist libertarian manifesto. Also, ideas from my past political campaign do not always correspond to my current gubernatorial run:


Like many libertarians, I was initially excited when Zoltan Istvan announced his candidacy for Governor of California.

Istvan is the founder of the Transhumanist Party and author of “The Transhumanist Wager,” which is considered a manifesto on transhumanist philosophy. The basic premise of transhumanism is that the next step in human evolution will be to improve our bodies and expand our lifespan with radical technology, eventually leading towards immortality. While he still needs to obtain the nomination, having someone announce their intents this early gave me hope that maybe the party would have a shot at making an impact in the California mid-terms.

Continue reading “Is Zoltan Istvan a Libertarian?” »

Apr 2, 2017

In 2068, ZDF Digital began working on a series that will change our perceptive of our world and human evolution

Posted by in category: evolution

The series, which is scheduled to launch in 2070, will provide the people of Earth and beyond a glimpse into the extreme applications that science brought us over the past 7 decades.

Read more

Mar 25, 2017

Evolution Strategies as a Scalable Alternative to Reinforcement Learning

Posted by in category: evolution

We’ve discovered that evolution strategies (ES), an optimization technique that’s been known for decades, rivals the performance of standard reinforcement learning (RL) techniques on modern RL benchmarks (e.g. Atari/MuJoCo), while overcoming many of RL’s inconveniences.

In particular, ES is simpler to implement (there is no need for backpropagation), it is easier to scale in a distributed setting, it does not suffer in settings with sparse rewards, and has fewer hyperparameters. This outcome is surprising because ES resembles simple hill-climbing in a high-dimensional space based only on finite differences along a few random directions at each step.

Read more

Mar 22, 2017

Of man and machine: The evolution of transhumanism

Posted by in categories: biotech/medical, evolution, transhumanism

Really good article by Dr. Kristin Kostick at Bayor College of Medicine. I’m excited to see #transhumanism spreading!


Dr. Kristin Kostick discusses LVADs, transhumanism, and how the integration of our bodies with technology can lead to longer, healthier lives.

Read more

Feb 13, 2017

Colonizing Mars could spark a new kind of frightening human evolution

Posted by in categories: evolution, space

Humans on Earth might not be allowed to meet Martians.

Read more

Feb 2, 2017

How breaks in DNA are repaired

Posted by in categories: biotech/medical, evolution, genetics

Interesting read especially as we look at various areas including synbio and super humans.


The results are significant for gene therapy procedures and for our understanding of cell transformation. A team of researchers from the biology department at TU Darmstadt has discovered that the processes for repairing DNA damage are far more complex than previously assumed. The ends of breaks in the double helix are not just joined, they are first changed in a meticulously choreographed process so that the original genetic information can be restored. The results have now been published in the research journal Molecular Cell.

DNA, the carrier of our genetic information, is exposed to continual damage. In the most serious damage of all, the DNA double-strand break, both strands of the double helix are broken and the helix is divided in two. If breaks like this are not efficiently repaired by the cell, important genetic information is lost. This is often accompanied by the death of the cell, or leads to permanent genetic changes and cell transformation. Over the course of evolution, ways to repair this DNA damage have developed, in which many enzymes work together to restore the genetic information with the maximum possible precision.

As it stands today, there are two main ways of repairing DNA double-strand breaks, which differ greatly in terms of their precision and complexity. The apparently simpler method, so-called non-homologous end joining, joins together the break ends as quickly as possible, without placing particular importance on accurately restoring the damaged genetic information. The second method of repair, homologous recombination, on the other hand, uses the exactly identical information present on a sister copy to repair the damaged DNA with great precision. However, such sister copies are only present in dividing cells, as the genetic information has to be duplicated before the cells divide. But most cells in the human body do not undergo division, which therefore assigns them to the apparently more inaccurate method of end joining.

Read more

Jan 31, 2017

Earth And Moon May Be On Long-Term Collision Course

Posted by in categories: energy, evolution, space

Nothing to fret about, but it is interesting that our Earth and Moon may end up colliding in the end. That’s long after our Sun has expanded as a Red Giant, but the implications for other earth-moon type systems are interesting.


For now, our anomalously large Moon is spinning away from us at a variable rate of 3.8 centimeters per year. But, in fact, the Earth and Moon may be on a very long-term collision course — one that incredibly some 65 billion years from now, could result in a catastrophic lunar inspiral.

“The final end-state of tidal evolution in the Earth-Moon system will indeed be the inspiral of the Moon and its subsequent collision and accretion onto Earth,” Jason Barnes, a planetary scientist at the University of Idaho, told me.

Continue reading “Earth And Moon May Be On Long-Term Collision Course” »

Jan 20, 2017

Making aptamers with biology’s help

Posted by in categories: biological, engineering, evolution

Scientists simulate evolution in the lab by introducing mutations iteratively into biomolecules such as nucleic acids and selecting for desired properties. When carrying this process out specifically on RNA molecules, they can evolve the RNAs to bind specific small molecules. But many of these so-called aptamers don’t bind well to their targets when put inside cells because they don’t fold into stable structures.

“As we solved the structures of naturally occurring aptamers, we noticed they had much more complex secondary and tertiary structures” than versions made in the lab, says Robert T. Batey of the University of Colorado, Boulder. “So we decided to use these naturally occurring RNA folds as starting points” for producing more stable artificial aptamers.

To prove their concept, Batey and coworkers used RNA sequences from naturally occurring ribozymes and riboswitches as scaffolds to evolve aptamers that bind amino acids and other small molecules used to make neurotransmitters (Nat. Chem. Biol. 2017, DOI: 10.1038/nchembio.2278). The resulting aptamers are selective for these precursor molecules over structurally similar amino acids and the neurotransmitters themselves.

Read more