Toggle light / dark theme

We’ll need thousands of these direct air capture plants or their equivalents from industry and nature to reduce atmospheric CO2.


Direct Air Capture, also known as DAC, is one of a number of carbon capture technologies seen as a way to mitigate the worst impacts of global warming. The technology harvests carbon dioxide (CO2) from ambient air. It is not an add-on to a coal-fired or natural-gas thermal power plant, but rather a standalone solution to removing CO2 from the atmosphere for the purpose of permanently sequestering it underground.

A leader in this form of carbon capture and sequestration (CCS) is Carbon Engineering, a Canadian-based company whose demonstration plant sits in Squamish, British Columbia. Bill Gates is an investor. And now Occidental Petroleum through its subsidiary 1PointFive has entered into a partnership to build and deploy a minimum of 70 or as many as 135 DAC plants like the one seen in the picture above by 2035.

Each facility will have the capacity to remove a megaton of CO2 from the atmosphere annually. The methodology uses a tower structure containing an array of giant fans which pull in air that then passes over a solution containing potassium hydroxide which attracts and binds the CO2 to it. Once captured the CO2 can then be compressed and shipped by pipeline to a sequestering site. And although a megaton sounds like a lot of CO2, it really is not.

This sci-fi megastructure has captivated big thinkers for decades. A leading expert in astrobiology tells us how to construct one.


The paper focused more on theory than engineering, and Dyson provided scant details on what such a megastructure might look like or how we might build one. He described his sphere only as a “habitable shell” encircling a star. But that was enough to captivate and inspire astrophysicists, scientists, and sci-fi writers. In some depictions, the Dyson Sphere, as it became known, appears as a massive ring encircling a star and reaching nearly to Earth. In others, the Sphere completely encases the sun, a hulking megastructure capturing every bit of that star’s energy. In addition to scientific works, Dyson Spheres have appeared in novels, movies, and TV shows—including Star Trek —as a home for advanced civilizations.

Dyson himself understood the challenges of constructing such a massive structure, and he was skeptical that it might ever happen. Nonetheless, his Sphere has stirred ambitious ideas about the future of our civilization, and it continues to be offered as a solution to some of humanity’s most dire dilemmas. Harnessing the total energy of our sun—or any star—would solve our immediate and long-term energy crisis, but when civilization gains access to the complete energy output of a star, meeting our terrestrial energy needs is just the beginning.

With so much energy available, we could direct high-powered laser pulses toward exoplanets that we think may contain life, immeasurably expanding our chances of communicating with distant civilizations. These Dyson-powered beams could travel farther into the universe than anything currently possible, penetrating the higher-density areas of space, such as dust clouds, which decay the signals we send now.

Los Alamos National Lab


In early June 1972, the world’s most intense proton beam was delivered through nearly a mile of vacuum tanks at the Los Alamos Neutron Science Center, or LANSCE. As the facility has evolved over five decades, that proton beam is now delivered to five state-of-the-art experimental areas, including the Isotope Production Facility.

The Isotope Production Facility excels in the basic science and applied engineering needed to produce and purify useful isotopes that can then be produced at scale in the marketplace. In the fight against cancer, recent and current clinical trials are yielding promising results with the short-lived isotope actinium-225, which delivers high-energy radiation to a cancer tumor without greatly affecting the surrounding tissue.

Several years ago, a promising therapeutic using stem cell factor (SCF) emerged that could potentially treat a variety of ailments, such as ischemia, heart attack, stroke and radiation exposure. However, during clinical trials, numerous patients suffered severe allergic reactions and development of SCF-based therapeutics stopped.

A research team led by engineers at The University of Texas at Austin has developed a related therapeutic that they say avoids these major allergic reactions while maintaining its therapeutic activity. The keys to the discovery, published recently in Nature Communications, were the use of a similar, membrane-bound version of SCF delivered in engineered lipid nanocarriers.

“We envision this as something you can inject where you have lack of blood flow and it could induce to grow in that area,” said Aaron Baker, a professor in the Cockrell School of Engineering’s Department of Biomedical Engineering, and one of the leaders on the project.

Organic farmers are returning to an unusual tool in the fight against weeds — fire. Called ‘flame weeding’ the process involves either using a small, handheld flamethrower, or installing a pretty hardcore row of flamethrowers onto the front of a tractor and slowly driving through fields of crops singeing the weeds in between the rows.

Flame Engineering, Inc. specializes in developing and selling flame weeding equipment and says the technique is rooted in science. The company’s website explains that the technique is not about blasting the weeds to kingdom come, but rather about focusing on destroying cell structure.

“Flame weeding is what we like to call a ‘slow kill.’ Essentially, you are destroying cell structure in the plant leaf. The weed will no longer put energy toward growth (photosynthesis) taking the kill through the root system. YES, flame weeding will kill the roots too! Even on big weeds (over 6″), you will see a stunning effect and even a kill within a few days, depending on how established the root system is and how long the plant was exposed to heat.”

Electro-optic modulators, which control aspects of light in response to electrical signals, are essential for everything from sensing to metrology and telecommunications. Today, most research into these modulators is focused on applications that take place on chips or within fiber optic systems. But what about optical applications outside the wire and off the chip, like distance sensing in vehicles?

Current technologies to modulate light in are bulky, slow, static, or inefficient. Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), in collaboration with researchers at the department of Chemistry at the University of Washington, have developed a compact and tunable electro-optic for free space applications that can modulate light at gigahertz speed.

“Our work is the first step toward a class of free-space electro-optic modulators that provide compact and efficient intensity modulation at gigahertz speed of free-space beams at telecom wavelengths,” said Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, senior author of the paper.

Circa 2019


Mark Lawrence (link is external), a postdoctoral scholar in materials science and engineering at Stanford, has moved a step closer to this future with a scheme to make a photon diode — a device that allows light to only flow in one direction — which, unlike other light-based diodes, is small enough for consumer electronics.

Our cells perform a marvel of engineering when it comes to packing information into small spaces. Every time a cell divides, it bundles up an amazing 4 metres of DNA into 46 tiny packages, each of which is only several millionths of a metre in length. Researchers from EMBL Heidelberg and the Julius-Maximilians-Universität Würzburg have now discovered how a family of DNA motor proteins succeeds in packaging loosely arranged strands of DNA into compact individual chromosomes during cell division.

The researchers studied condensin, a protein complex critical to the process of chromosome formation. Although this complex was discovered more than three decades ago, its mode of action remained largely unexplored. In 2018, researchers from the Häring group at EMBL Heidelberg and their collaborators showed that condensin molecules create loops of DNA, which may explain how chromosomes are formed. However, the inner workings by which the protein complex achieves this feat remained unknown.

“We have been working on this problem for a long time. But only now, by combining different experimental approaches, we have found an answer to this long-standing question,” said Christian Häring, former Group Leader at EMBL Heidelberg and now Professor at the Julius-Maximilians-Universität Würzburg.

Lamborghinis are already marvels of engineering but they become even more so when people decide to upgrade them. This is what designer Michael Hritzkrieg did with this new model called the Lamborghini LMXX2.

You can see from the pictures that it’s got some impressive treads that run all around the car making it clear that it can tackle even the most difficult terrains such as sands, rocks and soil. IE spoke to Hritzkrieg about his innovative design and he surprisingly described it as “a rush job to meet an Instagram competition deadline.”

The competition he is referring to is the AGP Contest on Instagram which asked participants to conceive of a design using the keywords “Desert + Lamborghini + Future”.