Blog

Archive for the ‘engineering’ category: Page 6

Nov 2, 2024

New Method Unravels Complex Causality

Posted by in categories: climatology, engineering

Summary: A new method developed by researchers allows scientists to identify unique, redundant, and synergistic causality, providing a clearer view of what influences complex systems. Known as SURD, this method has implications across diverse fields, from climate science to aerospace engineering.

Traditional methods often confuse variables that are not true causes, but SURD accurately decomposes causality, minimizing errors. This tool has the potential to aid in the design of optimized systems by pinpointing causative factors more precisely.

The researchers demonstrated SURD’s utility by examining turbulence, revealing previously hidden interactions between airflow variables. Their work highlights the benefits of SURD for more accurate causal analysis in complex fields.

Oct 31, 2024

Thread by @awiltschko on Thread Reader App

Posted by in categories: engineering, transportation

Thread#showTweet data-screenname= awiltschko data-tweet=1851327552490733686 dir= auto Well, we actually did it. We digitized scent. A fresh summer plum was the first fruit and scent to be fully digitized and reprinted with no human intervention. It smells great.

Holy moly, I’m still processing the magnitude of what we’ve done. And yet, it feels like as we cross this finish line we are instantly at a new starting line. I’ll have more to share about what’s in store that we’re building on top of this.

A huge HUGE congrats to the entire team across scientific, engineering, operational, and creative disciplines. It takes a village named Osmo to do this.

Oct 29, 2024

$7 billion “city within a city” planned for Phoenix

Posted by in categories: computing, economics, employment, engineering

“Our vision is for chip designers and engineering students, not just suppliers and manufacturers, to co-locate here, to create a value added ecosystem beyond just what it takes to build chips, and that’s how we’re going to create more value in the Phoenix economy,” Mack said.

A further three plants are also planned for the Phoenix site, which could bring TSMC’s total investment in the area to over $120 billion. Tech giant Apple has announced it will buy semiconductors from the fabrication plants.

The plants are anticipated to create 10,000 permanent jobs, and another 80,000 are expected to be created in the surrounding development.

Oct 28, 2024

Mouse study sheds light on the secret to maintaining a youthful immune system

Posted by in categories: biotech/medical, engineering, life extension

What keeps some immune systems youthful and effective in warding off age-related diseases? In a new paper published in Cellular & Molecular Immunology, USC Stem Cell scientist Rong Lu and her collaborators point the finger at a small subset of blood stem cells, which make an outsized contribution to maintaining either a youthful balance or an age-related imbalance of the two main types of immune cells: innate and adaptive.

Innate immune cells serve as the body’s first line of defense, mobilizing a quick and general attack against invading germs. For germs that evade the body’s innate immune defenses, the second line of attack consists of , such as B cells and T cells that rely on their memory of past infections to craft a specific and targeted response. A healthy balance between innate and adaptive immune cells is the hallmark of a youthful immune system—and a key to longevity.

“Our study provides compelling evidence that when a small subset of overproduces innate immune cells, this drives the aging of the immune system, contributes to disease, and ultimately shortens the lifespan,” said Lu, who is an associate professor of stem cell biology and , , medicine, and gerontology at USC, and a Leukemia & Lymphoma Society Scholar. Lu is also a member of the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, and the USC Norris Comprehensive Cancer Center at the Keck School of Medicine of USC.

Oct 26, 2024

Not Toyota, not Hyundai: This brand unveils the real hydrogen engine with an unexpected detail

Posted by in categories: engineering, sustainability, transportation

In a bold move towards sustainability in the automotive industry, Alpine has introduced its new V6 hydrogen engine. The engine is a groundbreaking development that merges high-performance engineering with eco-friendly technology. This innovative engine represents a significant leap for the French automotive brand, showcasing its commitment to advancing hydrogen as a viable fuel alternative in the world of motorsport and beyond.

While Japanese automobile company Toyota continues to be leading the hydrogen revolution, other automobile companies are following closely behind. While some have placed all their bets on electric vehicles being the future of sustainable engines, others are looking at ways to continue producing the internal combustion engine. The answer may be found in hydrogen technology whereby traditional internal combustion engines can be adapted to support the alternative fuel source.

Alpine previously introduced a hydrogen powered car in 2022. Now, the newer model is twice as powerful as the last. The car features a 3.5-litre, twin-turbo V6 engine. It produces a power output of 740bhp, and can reach up to 9,000rpm with 770 Nm of torque. The two hydrogen engines are located in the sidepods and behind the cockpit. The model has been in the works for two years and is a testament to Alpine’s continued dedication towards sustainability.

Oct 20, 2024

Engineers develop scalable process to decarbonize cement production

Posted by in categories: chemistry, engineering, sustainability

Researchers from UCLA’s Institute for Carbon Management have developed a method that could eliminate nearly all of of the carbon dioxide emitted during the process of cement production, which accounts for about 8% of global atmospheric CO2 emissions.

In a new study published in ACS Sustainable Chemistry & Engineering, the researchers describe how the new approach could be easily incorporated into existing cement-production processes, providing a more affordable alternative to existing solutions to decarbonize the industry.

Oct 19, 2024

Relive SpaceX’s epic Starship launch (and rocket catch) in these jawdropping photos and video

Posted by in categories: engineering, space travel

The photos look like space art, but they’re 100% real.

Oct 17, 2024

Dr. Leonard Tender, Ph.D. — Biological Technologies Office, DARPA — Next Generation Biomanufacturing

Posted by in categories: biological, chemistry, climatology, engineering, government, policy, quantum physics

Next Generation Biomanufacturing Technologies — Dr. Leonard Tender, Ph.D. — Biological Technologies Office, Defense Advanced Research Projects Agency — DARPA


Dr. Leonard Tender, Ph.D. is a Program Manager in the Biological Technologies Office at DARPA (https://www.darpa.mil/staff/dr-leonar…) where his research interests include developing new methods for user-defined control of biological processes, and climate and supply chain resilience.

Continue reading “Dr. Leonard Tender, Ph.D. — Biological Technologies Office, DARPA — Next Generation Biomanufacturing” »

Oct 15, 2024

Unlocking precision gene therapy: harnessing AAV tropism with nanobody swapping at capsid hotspots

Posted by in categories: biotech/medical, engineering

A nice study by Hoffmann et al. where nanobodies were inserted into various locations on adeno-associated virus (AAV) capsids. The authors also ablated hepatocyte tropism by mutating the heparan binding domain of the AAVs. These strategies greatly enhanced cell type specific targeting (in vitro).


Abstract. Adeno-associated virus (AAV) has been remarkably successful in the clinic, but its broad tropism is a practical limitation of precision gene therapy. A promising path to engineer AAV tropism is the addition of binding domains to the AAV capsid that recognize cell surface markers present on a targeted cell type. We have recently identified two previously unexplored capsid regions near the 2/5-fold wall and 5-fold pore of the AAV capsid that are amenable to insertion of larger protein domains, including nanobodies. Here, we demonstrate that these hotspots facilitate AAV tropism switching through simple nanobody replacement without extensive optimization in both VP1 and VP2. Our data suggest that engineering VP2 is the preferred path for maintaining both virus production yield and infectivity. We demonstrate highly specific targeting of human cancer cells expressing fibroblast activating protein (FAP). Furthermore, we found that the combination of FAP nanobody insertion plus ablation of the heparin binding domain can reduce off-target infection to a minimum, while maintaining a strong infection of FAP receptor-positive cells. Taken together, our study shows that nanobody swapping at multiple capsid locations is a viable strategy for nanobody-directed cell-specific AAV targeting.

Oct 12, 2024

In double breakthrough, mathematician helps solve two long-standing problems

Posted by in categories: chemistry, computing, economics, engineering, mathematics, physics

The solutions to these long-standing problems could further enhance our understanding of symmetries of structures and objects in nature and science, and of long-term behavior of various random processes arising in fields ranging from chemistry and physics to engineering, computer science and economics.


A Rutgers University-New Brunswick professor who has devoted his career to resolving the mysteries of higher mathematics has solved two separate, fundamental problems that have perplexed mathematicians for decades.

Page 6 of 262First345678910Last