Phonon interference hits new heights, promising leaps in quantum and energy tech.
Rice researchers achieve record phonon interference, opening new paths in quantum sensing and advanced molecular detection.
A potential game-changer for fuel cells, smart windows, and next-generation electronics
A team of scientists from Korea and Japan has discovered a new type of crystal that can “breathe”—releasing and absorbing oxygen repeatedly at relatively low temperatures. This unique ability could transform the way we develop clean energy technologies, including fuel cells, energy-saving windows, and smart thermal devices.
Numerous market analyses have shown that over the next five years, demand for lithium-ion batteries for everything from personal electric devices to grid-scale energy storage is expected to grow dramatically.
To meet this demand, battery manufacturing needs to be faster, cheaper, more dependable, less energy-intensive and less wasteful. A key part of lithium-ion battery manufacturing with significant room for improvement is the processing and fabrication of electrodes.
To facilitate advances in this area, researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have conducted a comprehensive review of the scientific literature on advanced electrode processing technologies. The findings are published in the journal Nature Reviews Clean Technology.
University at Albany chemists have created a new high-energy compound that could revolutionize rocket fuel and make space flights more efficient. Upon ignition, the compound releases more energy relative to its weight and volume compared to current fuels. In a rocket, this would mean less fuel required to power the same flight duration or payload and more room for mission-critical supplies. Their study is published in the Journal of the American Chemical Society.
“In rocket ships, space is at a premium,” said Assistant Professor of Chemistry Michael Yeung, whose lab led the work. “Every inch must be packed efficiently, and everything onboard needs to be as light as possible. Creating more efficient fuel using our new compound would mean less space is needed for fuel storage, freeing up room for equipment, including instruments used for research. On the return voyage, this could mean more space is available to bring samples home.”
The newly synthesized compound, manganese diboride (MnB2), is over 20% more energetic by weight and about 150% more energetic by volume compared to the aluminum currently used in solid rocket boosters. Despite being highly energetic, it is also very safe and will only combust when it meets an ignition agent like kerosene.
Researchers in Germany have unveiled the Metafiber, a breakthrough device that allows ultra-precise, rapid, and compact control of light focus directly within an optical fiber. Unlike traditional systems that rely on bulky moving parts, the Metafiber uses a tiny 3D nanoprinted hologram on a dual-core fiber to steer light by adjusting power between its cores. This enables seamless, continuous focus shifts over microns with excellent beam quality.
From precision machining to advanced microscopy, the demand for higher-power, ultrafast lasers continues to grow. Traditionally, researchers have relied on single-mode fibers to build these lasers, but they face a fundamental physical limit on energy output. To break through this bottleneck, we have turned to multimode fibers, which can carry many light modes—essentially different shapes of light—at once, a technique known as spatiotemporal mode-locking (STML).
However, getting these different modes to work together in harmony has been a significant challenge. In our latest research, published in Optics Letters, we have developed a new technique that allows us to precisely and independently control each of these transverse modes, leading to a dramatic boost in laser power and versatility.
The core problem we faced is known as intermodal dispersion. In a multimode fiber, different light modes travel at slightly different speeds. This velocity mismatch causes the laser pulses to spread out and separate in time and space, preventing the formation of stable, high-power pulses. Previous STML techniques typically used a method called spatial filtering to compensate for this dispersion, but this approach limits the number of modes that can be locked together, thereby capping the potential power enhancement.
The University of Jyväskylä, Finland, has been involved as part of an international collaboration that has identified a way to completely suppress superconductivity in superconducting and ferromagnetic junctions. The results published in Nature Communications are key to the development of non-volatile superconducting random access memories and could enable more energy-efficient information and communication technologies.