Toggle light / dark theme

Carbon monoxide, the ‘silent killer,’ becomes a boon for fuel cell catalysts

Researchers have developed a technology that uses carbon monoxide, typically harmful to humans, to precisely control metal thin films at a thickness of 0.3 nanometers. This technology enables faster and simpler production of core–shell catalysts, a key factor in improving the economic viability of fuel cells, and is expected to significantly boost related industries.

The findings are published in the journal ACS Nano. The team includes Dr. Gu-Gon Park, Dr. Yongmin Kwon, and Dr. Eunjik Lee from the Hydrogen Fuel Cell Laboratory at the Korea Institute of Energy Research.

Single molecular membrane can make lithium batteries safer and longer-lasting

A team of Korean scientists has developed a separator technology that dramatically reduces the explosion risk of lithium batteries while doubling their lifespan. Like an ultra-thin bulletproof vest protecting both sides, this molecularly engineered membrane stabilizes both the anode and cathode in next-generation lithium-metal batteries.

The joint research, led by Professor Soojin Park and Dr. Dong-Yeob Han from the Department of Chemistry at POSTECH, together with Professor Tae Kyung Lee of Gyeongsang National University and Dr. Gyujin Song of the Korea Institute of Energy Research (KIER), was recently published in Energy & Environmental Science.

Conventional lithium-ion batteries, which power today’s electric vehicles and energy storage systems, are approaching their theoretical energy limits. In contrast, lithium-metal batteries can store about 1.5 times more energy within the same volume, potentially extending an electric vehicle’s driving range from 400 km to approximately 700 km per charge. However, their practical use has been hindered by serious safety issues.

On-demand electronic switching of topology achieved in a single crystal

University of British Columbia (UBC) scientists have demonstrated a reversible way to switch the topological state of a quantum material using mechanisms compatible with modern electronic devices. Published in Nature Materials, the study offers a new route toward more energy efficient electronics based on topologically protected currents rather than conventional charge flow.

“Conventional electronics involve currents of electrons that waste energy and generate heat due to electrical resistance. Topological currents are protected by symmetry, and so they are promising for new types of electronics with significantly less dissipation,” said Dr. Meigan Aronson, an investigator with UBC’s Stewart Blusson Quantum Matter Institute and the Department of Physics and Astronomy.

“Our research uncovers a specific mechanism where the addition or subtraction of electrical charge can drive a reversible topological transition in the crystal, switching it from a metal that can conduct charge to an insulator that can’t. This is a key step towards the implementation of a new type of low-dissipation electronics based on symmetry and topology, and not simply on charge.”

New graphene breakthrough supercharges energy storage

Engineers have achieved a significant advance in the international effort to create energy storage technologies that combine rapid charging with strong power output, paving the way for next-generation systems in electric transportation, grid support and everyday electronics.

According to findings published in Nature Communications, the researchers have developed a new carbon-based material that enables supercapacitors to hold energy levels comparable to traditional lead-acid batteries while releasing that energy far more quickly than conventional battery designs.

Scientists Detect “Switchback” Phenomenon In Earth’s Magnetosphere For The First Time

The study was led by Emily McDougall, an astrophysicist who conducted the work while at the University of New Hampshire. McDougall’s research focuses on a phenomenon called magnetic reconnection, in which nearby magnetic fields—like those of the Earth and the Sun—interact and release huge amounts of energy. These energy releases, far from our planet, kickstart processes that produce phenomena here on Earth, such as dramatic auroras.

Switchbacks are kink-shaped plasma structures that form out of reconnection events. Switchbacks have been previously found near the Sun, by missions like the Parker Solar Probe, but not near Earth.

Quasi-periodic oscillations detected in unusual multi-trigger gamma-ray burst

A new study led by the Yunnan Observatories of the Chinese Academy of Sciences has detected quasi-periodic oscillation (QPO) signals in an unusual gamma-ray burst (GRB) event. The findings are published in The Astrophysical Journal.

GRBs are short-timescale, highly energetic explosive phenomena typically associated with the collapse of massive stars or the mergers of compact objects. On July 2, 2025, the Gamma-ray Burst Monitor (GBM) aboard NASA’s Fermi satellite detected an unusual high-energy burst—designated GRB 250702DBE—that triggered the Fermi/GBM system three times.

Despite being named in accordance with standard GRB conventions, the event exhibited striking anomalies: its duration spanned several hours, far exceeding that of typical GRBs. The same source, also detected in the X-ray band by the Einstein Probe (EP) as EP250702a, has drawn scientific interest due to its long duration and unclear physical origin and radiation mechanisms.

Mexico Reveals 314-Petaflop Supercomputer Named After Aztec Goddess

The Mexican government will build a supercomputer with a processing capacity seven times greater than the current most powerful computer in Latin America, officials responsible for the project said Wednesday.

Named Coatlicue, after a goddess in Aztec mythology representing the source of power and life, the computer will have a processing capacity of 314 petaflops.

“We want it to be a public supercomputer, a supercomputer for the people,” President Claudia Sheinbaum told reporters.

/* */