Blog

Archive for the ‘encryption’ category: Page 13

Feb 27, 2023

Space: The Final Frontier For Wireless Communications

Posted by in categories: encryption, mobile phones, satellites

The buzz in the wireless industry is all about space, or what is referred to as non-terrestrial networks (NTNs). The wireless 3GPP Release 17 specification includes two new standards for satellite communications from smartphones, mobile electronics, and IoT devices directly to satellites. While satellites have always been part of the wireless communications infrastructure, they have traditionally provided backhaul network communications, not direct communications to mobile devices other than clunky satellite phones and emergency equipment. Direct satellite communications with individual mobile devices will help overcome gaps in terrestrial cellular networks, providing a truly global infrastructure that can be leveraged by a variety of industries, and bridge the digital divide by bringing wireless communications to rural areas that often lack the infrastructure even with the rollout of 5G cellular networks.

The 3rd Generation Partnership Project or 3GPP is a global standards body consisting of a wide variety of wireless ecosystem members, such as intellectual property (IP) providers, semiconductor companies, networking companies, device OEMs, and wireless operators. Since 1998 and 2G cellular technology, members of the 3GPP have worked together to develop standards for new wireless technologies continuously. While the industry is now well past 3G and new generations of cellular technology are still introduced approximately every 10 years, new releases of the 3GPP standards are released approximately every two years within a generation in an on-going effort to increase the efficient use of a limited natural resource – radio spectrum. The standards also encourage the freeing up of additional spectrum, the development of new radio access networks (RANs), new encryption technology, higher network performance, aggregation of spectrum from different carriers and wireless technologies, support for additional use cases, and new network configurations. In other words, the 3GPP group is tasked with improving wireless technology with each generation and providing a global network that can be accessed from anywhere and by any device. With the inclusion of satellite networks, or non-terrestrial networks (NTNs), a global network will finally be possible.

The latest 3GPP standard that was finalized in 2023 is Release 17, the 3rd Release within the 5G cellular generation. Among other enhancements and additions, Release 17 includes two new standards for satellite networks, IoT-NTN and New Radio NTN or NR-NTN. The IoT-NTN standard defines narrow band using a 200KHz channel for two-way messaging and other low-bandwidth consumer and embedded/IoT applications, such as location tracking, asset tracking, and sensor monitoring. The data rates for IoT-NTN are similar to the data rates that were experienced in 2G. It will provide basic data connectivity.

Feb 23, 2023

AI Helps Crack NIST-Recommended Post-Quantum Encryption Algorithm

Posted by in categories: encryption, information science, quantum physics, robotics/AI

The CRYSTALS-Kyber public-key encryption and key encapsulation mechanism recommended by NIST in July 2022 for post-quantum cryptography has been broken. Researchers from the KTH Royal Institute of Technology, Stockholm, Sweden, used recursive training AI combined with side channel attacks.

A side-channel attack exploits measurable information obtained from a device running the target implementation via channels such as timing or power consumption. The revolutionary aspect of the research (PDF) was to apply deep learning analysis to side-channel differential analysis.

“Deep learning-based side-channel attacks,” say the researchers, “can overcome conventional countermeasures such as masking, shuffling, random delays insertion, constant-weight encoding, code polymorphism, and randomized clock.”

Feb 19, 2023

Quantum Physicists Make Nanoscopic Breakthrough of Colossal Significance

Posted by in categories: computing, encryption, internet, quantum physics

In a new breakthrough, researchers at the University of Copenhagen, in collaboration with Ruhr University Bochum, have solved a problem that has caused quantum researchers headaches for years. The researchers can now control two quantum light sources rather than one. Trivial as it may seem to those uninitiated in quantum, this colossal breakthrough allows researchers to create a phenomenon known as quantum mechanical entanglement. This, in turn, opens new doors for companies and others to exploit the technology commercially.

Going from one to two is a minor feat in most contexts. But in the world of quantum physics, doing so is crucial. For years, researchers around the world have strived to develop stable quantum light sources and achieve the phenomenon known as quantum mechanical entanglement – a phenomenon, with nearly sci-fi-like properties, where two light sources can affect each other instantly and potentially across large geographic distances. Entanglement is the very basis of quantum networks and central to the development of an efficient quantum computer.

Researchers from the Niels Bohr Institute published a new result in the highly esteemed journal Science, in which they succeeded in doing just that. According to Professor Peter Lodahl, one of the researchers behind the result, it is a crucial step in the effort to take the development of quantum technology to the next level and to “quantize” society’s computers, encryption, and the internet.

Feb 18, 2023

AI and the Transformation of the Human Spirit

Posted by in categories: business, economics, employment, encryption, mathematics, robotics/AI, transportation

A second problem is the risk of technological job loss. This is not a new worry; people have been complaining about it since the loom, and the arguments surrounding it have become stylized: critics are Luddites who hate progress. Whither the chandlers, the lamplighters, the hansom cabbies? When technology closes one door, it opens another, and the flow of human energy and talent is simply redirected. As Joseph Schumpeter famously said, it is all just part of the creative destruction of capitalism. Even the looming prospect of self-driving trucks putting 3.5 million US truck drivers out of a job is business as usual. Unemployed truckers can just learn to code instead, right?

Those familiar replies make sense only if there are always things left for people to do, jobs that can’t be automated or done by computers. Now AI is coming for the knowledge economy as well, and the domain of humans-only jobs is dwindling absolutely, not merely morphing into something new. The truckers can learn to code, and when AI takes that over, coders can… do something or other. On the other hand, while technological unemployment may be long-term, its problematicity might be short-term. If our AI future is genuinely as unpredictable and as revolutionary as I suspect, then even the sort of economic system we will have in that future is unknown.

Continue reading “AI and the Transformation of the Human Spirit” »

Feb 17, 2023

Chromo-encryption method uses color to encode information

Posted by in categories: encryption, nanotechnology, security

In a new approach to security that unites technology and art, EPFL researchers have combined silver nanostructures with polarized light to yield a range of brilliant colors, which can be used to encode messages.

Cryptography is something of a new field for Olivier Martin, who has been studying the optics of nanostructures for many years as head of the Nanophotonics and Metrology Lab EPFL’s School of Engineering. But after developing some new silver nanostructures in collaboration with the Center of MicroNanoTechnology, Martin and Ph.D. student Hsiang-Chu Wang noticed that these nanostructures reacted to in an unexpected way, which just happened to be perfect for encoding information.

They found that when polarized light was shone through the nanostructures from certain directions, a range of vivid and easily-identifiable colors was reflected back. These different colors could be assigned numbers, which could then be used to represent letters using the standard code ASCII (American Standard Code for Information Interchange). To encode a secret message, the researchers applied a quaternary code using the digits 0, 1, 2 and 3 (as opposed to the more commonly used 0 and 1). The result was a series of four-digit strings composed of different color combinations that could be used to spell out a message, and the method of chromo-encryption was born.

Jan 31, 2023

Prosecutors ask court to stop Sam Bankman-Fried from using Signal

Posted by in category: encryption

He is trying to influence the witness, alleged prosecutors.

Prosecutors of the FTX trial in the U.S. have asked the court to tighten the norms of the bail given to former CEO Sam Bankman-Fried (SBF) and bar him from using the encrypted messaging app Signal, The New York Times.


David Dee Delgado/Getty.

Continue reading “Prosecutors ask court to stop Sam Bankman-Fried from using Signal” »

Jan 27, 2023

Apple says it will allow iCloud backups to be fully encrypted

Posted by in categories: encryption, government, law enforcement, mobile phones

After years of delay under government pressure, Apple said Wednesday that it will offer fully encrypted backups of photos, chat histories and most other sensitive user data in its cloud storage system worldwide, putting them out of reach of most hackers, spies and law enforcement.

Maybe a New iPhone is a good idea for a second phone.


The one service Apple offered that could not be encrypted was iCloud. Now that will change.

Jan 26, 2023

How Quantum Computing Will Transform Our World

Posted by in categories: climatology, economics, encryption, finance, government, internet, mathematics, military, quantum physics, space, supercomputing, sustainability

Tech giants from Google to Amazon and Alibaba —not to mention nation-states vying for technological supremacy—are racing to dominate this space. The global quantum-computing industry is projected to grow from $412 million in 2020 to $8.6 billion in 2027, according to an International Data Corp. analysis.

Whereas traditional computers rely on binary “bits”—switches either on or off, denoted as 1s and 0s—to process information, the “qubits” that underpin quantum computing are tiny subatomic particles that can exist in some percentage of both states simultaneously, rather like a coin spinning in midair. This leap from dual to multivariate processing exponentially boosts computing power. Complex problems that currently take the most powerful supercomputer several years could potentially be solved in seconds. Future quantum computers could open hitherto unfathomable frontiers in mathematics and science, helping to solve existential challenges like climate change and food security. A flurry of recent breakthroughs and government investment means we now sit on the cusp of a quantum revolution. “I believe we will do more in the next five years in quantum innovation than we did in the last 30,” says Gambetta.

But any disrupter comes with risks, and quantum has become a national-security migraine. Its problem-solving capacity will soon render all existing cryptography obsolete, jeopardizing communications, financial transactions, and even military defenses. “People describe quantum as a new space race,” says Dan O’Shea, operations manager for Inside Quantum Technology, an industry publication. In October, U.S. President Joe Biden toured IBM’s quantum data center in Poughkeepsie, N.Y., calling quantum “vital to our economy and equally important to our national security.” In this new era of great-power competition, China and the U.S. are particularly hell-bent on conquering the technology lest they lose vital ground. “This technology is going to be the next industrial revolution,” says Tony Uttley, president and COO for Quantinuum, a Colorado-based firm that offers commercial quantum applications. “It’s like the beginning of the internet, or the beginning of classical computing.”

Jan 26, 2023

Quantum Safe Cryptography — A Quantum Leap Needed Now

Posted by in categories: biotech/medical, computing, encryption, finance, information science, internet, mathematics, quantum physics, security

Whether we realize it or not, cryptography is the fundamental building block on which our digital lives are based. Without sufficient cryptography and the inherent trust that it engenders, every aspect of the digital human condition we know and rely on today would never have come to fruition much less continue to evolve at its current staggering pace. The internet, digital signatures, critical infrastructure, financial systems and even the remote work that helped the world limp along during the recent global pandemic all rely on one critical assumption – that the current encryption employed today is unbreakable by even the most powerful computers in existence. But what if that assumption was not only challenged but realistically compromised?

This is exactly what happened when Peter Shor proposed his algorithm in 1995, dubbed Shor’s Algorithm. The key to unlocking the encryption on which today’s digital security relies is in finding the prime factors of large integers. While factoring is relatively simple with small integers that have only a few digits, factoring integers that have thousands of digits or more is another matter altogether. Shor proposed a polynomial-time quantum algorithm to solve this factoring problem. I’ll leave it to the more qualified mathematicians to explain the theory behind this algorithm but suffice it to say that when coupled with a quantum computer, Shor’s Algorithm drastically reduces the time it would take to factor these larger integers by multiple orders of magnitude.

Prior to Shor’s Algorithm, for example, the most powerful computer today would take millions of years to find the prime factors of a 2048-bit composite integer. Without Shor’s algorithm, even quantum computers would take such an inordinate amount of time to accomplish the task as to render it unusable by bad actors. With Shor’s Algorithm, this same factoring can potentially be accomplished in a matter of hours.

Jan 18, 2023

IBM: Quantum computing poses an ‘existential threat’ to data encryption

Posted by in categories: business, computing, encryption, existential risks, quantum physics, security

Check out all the on-demand sessions from the Intelligent Security Summit here.

For years, encryption has played a core role in securing enterprise data. However, as quantum computers become more advanced, traditional encryption solutions and public-key cryptography (PKC) standards, which enterprise and consumer vendors rely on to secure their products, are at serious risk of decryption.

Today, IBM Institute for Business Value issued a new report titled Security in the Quantum Era, examining the reality of quantum risk and the need for enterprise adoption of quantum-safe capabilities to safeguard the integrity of critical applications and infrastructure as the risk of decryption increases.

Page 13 of 58First1011121314151617Last