Blog

Archive for the ‘cosmology’ category: Page 64

Feb 2, 2024

Astronomers Make Historic Discovery: Oldest Black Hole Ever Observed Detected

Posted by in category: cosmology

The young host galaxy, called GN-z11, glows from such an energetic black hole at its centre. Black holes cannot be directly observed, but instead they are detected by the tell-tale glow of a swirling accretion disc, which forms near the edges of a black hole. The gas in the accretion disc becomes extremely hot and starts to glow and radiate energy in the ultraviolet range. This strong glow is how astronomers are able to detect black holes.

GN-z11 is a compact galaxy, about one hundred times smaller than the Milky Way, but the black hole is likely harming its development. When black holes consume too much gas, it pushes the gas away like an ultra-fast wind. This ‘wind’ could stop the process of star formation, slowly killing the galaxy, but it will also kill the black hole itself, as it would also cut off the black hole’s source of ‘food’

Maiolino says that the gigantic leap forward provided by JWST makes this the most exciting time in his career. “It’s a new era: the giant leap in sensitivity, especially in the infrared, is like upgrading from Galileo’s telescope to a modern telescope overnight,” he said. “Before Webb came online, I thought maybe the universe isn’t so interesting when you go beyond what we could see with the Hubble Space Telescope. But that hasn’t been the case at all: the universe has been quite generous in what it’s showing us, and this is just the beginning.”

Feb 1, 2024

The Troubling Mysteries at the Heart of Nuclear Bombs

Posted by in categories: cosmology, military

Plutonium-pit secrets, growing up in parallel universes, the strange aftermath of a fictional wildfire, and more books out now.

Jan 31, 2024

Bright galaxies put dark matter to the test

Posted by in categories: cosmology, physics

For the past year and a half, the James Webb Space Telescope has delivered astonishing images of distant galaxies formed not long after the Big Bang, giving scientists their first glimpses of the infant universe. Now, a group of astrophysicists has upped the ante: Find the tiniest, brightest galaxies near the beginning of time itself, or scientists will have to totally rethink their theories about dark matter.

The team, led by UCLA astrophysicists, ran simulations that track the formation of small galaxies after the Big Bang and included, for the first time, previously neglected interactions between gas and dark matter. They found that the galaxies created are very tiny, much brighter, and form more quickly than they do in typical simulations that don’‘t take these interactions into account, instead revealing much fainter galaxies.

Small galaxies, also called , are present throughout the universe, and are often thought to represent the earliest type of galaxy. Small galaxies are thus especially interesting to scientists studying the origins of the universe. But the small galaxies they find don’t always match what they think they should find. Those closest to the Milky Way spin quicker or are not as dense as in simulations, indicating that the models might have omitted something, such as these gas-dark matter interactions.

Jan 31, 2024

Scientists rule out a popular alternative theory to dark matter

Posted by in categories: cosmology, information science, particle physics

A consensus has arisen in the astronomical community that familiar matter made of atoms is not the dominant form of matter in the Universe. Instead, an invisible form of matter, called dark matter, is thought to be far more prevalent. However, a small group of researchers deny the existence of dark matter, instead saying our understanding of how objects move is incomplete. A recent paper in the Monthly Notices of the Royal Astronomical Society seems to have ruled this out definitively.

Stars, planets, and galaxies move under the direction of the force of gravity, and Isaac Newton worked out the laws that govern that motion, which we now call Newtonian dynamics. However, despite the enormous success of Newtonian dynamics, this success is not universal. Indeed, when Newton’s equations are applied to certain astronomical phenomena, they do not make the correct predictions. One such example is the speed at which galaxies rotate. When astronomers measure the speed of stars in the periphery of a galaxy, they move faster than can be explained by accepted theory. Instead, the galaxies should fly apart.

Continue reading “Scientists rule out a popular alternative theory to dark matter” »

Jan 31, 2024

18 Black Holes Caught in The Act of Consuming Nearby Stars

Posted by in categories: cosmology, information science

Scientists identified 18 new Tidal Disruption Events (TDEs), instances where a nearby black hole violently tears apart a neighboring star.

The powerful gravitational force of the black holes rips apart the star in its vicinity, resulting in a substantial release of energy across the entire electromagnetic spectrum.

The new catalog of TDEs was found by combing through the archival data of the satellite telescope NEOWISE. The team identified infrared patterns associated with these intense, transient bursts using a novel algorithm.

Jan 31, 2024

What was it like when dark energy rose to prominence?

Posted by in category: cosmology

But after a few billion years, something fishy begins to occur. Instead of approaching zero, the expansion rate starts to decrease at a slower rate than one would expect, and a distant galaxy’s recession speed doesn’t drop in the same fashion anymore. Once the Universe reaches an age that’s 7.8 billion years after the Big Bang, things start to get weird: these distant galaxies stop slowing down in their recession entirely, and appear to “coast” in the sense that they move away from us at a constant speed from moment-to-moment, as though the expansion had stopped decelerating.

And then, as the Universe continues to age, the recession speeds no longer remain constant, nor do they go back to decreasing. Instead, these distant galaxies appear to recede from us (and one another) more and more quickly. It’s as though some effect is causing the expansion to neither decelerate nor remain constant, but to actually increase and accelerate!

Jan 31, 2024

Tapping Into The Power of a Hypothetical Black Hole Could Create an Insane Bomb

Posted by in category: cosmology

Black holes are powerful gravitational engines. So you might imagine that there must be a way to extract energy from them given the chance, and you’d be right.

Certainly, we could tap into all the heat and kinetic energy of a black hole’s accretion disk and jets, but even if all you had was a black hole in empty space, you could still extract energy from a trick known as the Penrose process.

First proposed by Roger Penrose in 1971, it is a way to extract rotational energy from a black hole. It uses an effect known as frame dragging, where a rotating body twists nearby space in such a way that an object falling toward the body is dragged slightly along the path of rotation.

Jan 29, 2024

Scientists Use Supercomputer To Unravel Mysteries of Dark Matter and the Universe’s Evolution

Posted by in categories: cosmology, evolution, particle physics, supercomputing

“The memory requirements for PRIYA simulations are so big you cannot put them on anything other than a supercomputer,” Bird said.

TACC awarded Bird a Leadership Resource Allocation on the Frontera supercomputer. Additionally, analysis computations were performed using the resources of the UC Riverside High-Performance Computer Cluster.

The PRIYA simulations on Frontera are some of the largest cosmological simulations yet made, needing over 100,000 core-hours to simulate a system of 30723 (about 29 billion) particles in a ‘box’ 120 megaparsecs on edge, or about 3.91 million light-years across. PRIYA simulations consumed over 600,000 node hours on Frontera.

Jan 28, 2024

MIT physicists discover surprising twist in Milky Way’s core

Posted by in categories: cosmology, physics

MIT physicists have discovered a surprising twist in the Milky Way’s rotation curve that challenges our understanding of dark matter. By tracking the speed of stars across the galaxy, they’ve uncovered a potential deficit of dark matter at the galactic core.

Traditionally, astronomers believed that dark matter was responsible for the galaxy’s rotation. Still, the new analysis raises the possibility that the Milky Way’s gravitational center may be lighter in mass than previously thought.

Jan 28, 2024

Ancient philosophers understood a key truth of modern cosmology

Posted by in category: cosmology

Ancient ideas about the Universe describe matter as constantly ebbing and flowing, positioning nature as the ultimate recycler.

Page 64 of 405First6162636465666768Last