Blog

Archive for the ‘cosmology’ category: Page 278

Jul 24, 2020

Cornell Scientists Say “Strange Metals” Are Similar to Black Holes

Posted by in categories: cosmology, quantum physics

Extreme Conditions

A metal’s electrical resistance, or how much it impedes the flow of electricity, is determined by a number of factors. But, according to the new research, if a superconducting metal — one that doesn’t impede electrical currents at all — is heated past the temperature at which it can still superconduct, it becomes a strange metal. At that point, its resistance is determined only by temperature and two fundamental constants — the same three factors that determine many qualities of a black hole.

“The fact that we call them strange metals should tell you how well we understand them,” Olivier Parcollet from the Flatiron Institute’s Center for Computational Quantum Physics said in a press release. “Strange metals share remarkable properties with black holes, opening exciting new directions for theoretical physics.”

Jul 23, 2020

Quantum physicists crack mystery of ‘strange metals,’ a new state of matter

Posted by in categories: cosmology, quantum physics

Even by the standards of quantum physicists, strange metals are just plain odd. The materials are related to high-temperature superconductors and have surprising connections to the properties of black holes. Electrons in strange metals dissipate energy as fast as they’re allowed to under the laws of quantum mechanics, and the electrical resistivity of a strange metal, unlike that of ordinary metals, is proportional to the temperature.

Generating a theoretical understanding of strange metals is one of the biggest challenges in condensed matter physics. Now, using cutting-edge computational techniques, researchers from the Flatiron Institute in New York City and Cornell University have solved the first robust theoretical model of strange metals. The work reveals that strange metals are a new state of matter, the researchers report July 22 in the Proceedings of the National Academy of Sciences.

“The fact that we call them strange metals should tell you how well we understand them,” says study co-author Olivier Parcollet, a senior research scientist at the Flatiron Institute’s Center for Computational Quantum Physics (CCQ). “Strange metals share remarkable properties with black holes, opening exciting new directions for theoretical physics.”

Jul 21, 2020

New cosmic magnetic field structures discovered in galaxy NGC 4217

Posted by in category: cosmology

Spiral galaxies such as our Milky Way can have sprawling magnetic fields. There are various theories about their formation, but so far the process is not well understood. An international research team has now analyzed the magnetic field of the Milky Way-like galaxy NGC 4217 in detail on the basis of radio astronomical observations and has discovered as yet unknown magnetic field structures. The data suggest that star formation and star explosions, so-called supernovae, are responsible for the visible structures.

The team led by Dr. Yelena Stein from Ruhr-Universität Bochum, the Centre de Données astronomiques de Strasbourg and the Max Planck Institute for Radio Astronomy in Bonn together with US-American and Canadian colleagues, published their report in the journal Astronomy and Astrophysics, released online on 21 July 2020.

The analyzed data had been compiled in the project “Continuum Halos in Nearby Galaxies”, where were utilized to measure 35 galaxies. “Galaxy NGC 4217 is of particular interest to us,” explains Yelena Stein, who began the study at the Chair of Astronomy at Ruhr-Universität Bochum under Professor Ralf-Jürgen Dettmar and who currently works at the Centre de Données astronomiques de Strasbourg. NGC 4217 is similar to the Milky Way and is only about 67 million light years away, which means relatively close to it, in the Ursa Major constellation. The researchers therefore hope to successfully transfer some of their findings to our home galaxy.

Jul 20, 2020

Astrophysicists fill in 11 billion years of the universe’s expansion history

Posted by in category: cosmology

The Sloan Digital Sky Survey (SDSS) released today a comprehensive analysis of the largest three-dimensional map of the universe ever created, filling in the most significant gaps in our possible exploration of its history.

“We know both the ancient history of the universe and its recent expansion history fairly well, but there’s a troublesome gap in the middle 11 billion years,” says cosmologist Kyle Dawson of the University of Utah, who leads the team announcing today’s results. “For five years, we have worked to fill in that gap, and we are using that information to provide some of the most substantial advances in cosmology in the last decade.”

Continue reading “Astrophysicists fill in 11 billion years of the universe’s expansion history” »

Jul 20, 2020

Monster Black Hole Found in the Early Universe – 1.5 Billion Times More Massive Than Our Sun

Posted by in category: cosmology

The second most distant quasar ever discovered now has a Hawaiian name.

Astronomers have discovered the second most distant quasar ever found, using the international Gemini Observatory and Cerro Tololo Inter-American Observatory (CTIO), Programs of NSF’s NOIRLab. It is also the first quasar to receive an indigenous Hawaiian name, Pōniuāʻena. The quasar contains a monster black hole, twice the mass of the black hole in the only other quasar found at the same epoch, challenging the current theories of supermassive black hole formation and growth in the early Universe.

Continue reading “Monster Black Hole Found in the Early Universe – 1.5 Billion Times More Massive Than Our Sun” »

Jul 20, 2020

Waterloo scientists help create 3D map of the universe

Posted by in category: cosmology

Scientists at the University of Waterloo played a big role in a 20-year global project to make a 3D map of the universe, which will help improve knowledge about the expansion of the universe.

Welcome to The National, the flagship nightly newscast of CBC News.

Continue reading “Waterloo scientists help create 3D map of the universe” »

Jul 19, 2020

Magnetic Wormhole Created in Lab

Posted by in categories: cosmology, physics, robotics/AI

Ripped from the pages of a sci-fi novel, physicists have crafted a wormhole that tunnels a magnetic field through space.

“This device can transmit the magnetic field from one point in space to another point, through a path that is magnetically invisible,” said study co-author Jordi Prat-Camps, a doctoral candidate in physics at the Autonomous University of Barcelona in Spain. “From a magnetic point of view, this device acts like a wormhole, as if the magnetic field was transferred through an extra special dimension.”

The idea of a wormhole comes from Albert Einstein’s theories. In 1935, Einstein and colleague Nathan Rosen realized that the general theory of relativity allowed for the existence of bridges that could link two different points in space-time. Theoretically these Einstein-Rosen bridges, or wormholes, could allow something to tunnel instantly between great distances (though the tunnels in this theory are extremely tiny, so ordinarily wouldn’t fit a space traveler). So far, no one has found evidence that space-time wormholes actually exist. [Science Fact or Fiction? The Plausibility of 10 Sci-Fi Concepts].

Jul 19, 2020

Bold Plan to Determine If Planet Nine Is a Primordial Black Hole

Posted by in categories: cosmology, futurism

Scientists at Harvard University and the Black Hole Initiative (BHI) have developed a new method to find black holes in the outer solar system, and along with it, determine once-and-for-all the true nature of the hypothesized Planet Nine. The paper, accepted to, highlights the ability of the future Legacy Survey of Space and Time (LSST) mission to observe accretion flares, the presence of which could prove or rule out Planet Nine as a black hole.

Dr. Avi Loeb, Frank B. Baird Jr. Professor of Science at Harvard, and Amir Siraj, a Harvard undergraduate student, have developed the new method to search for black holes in the outer solar system, based on flares that result from the disruption of intercepted comets. The study suggests that the LSST has the capability to find black holes by observing for accretion flares resulting from the impact of small Oort cloud objects.

“In the vicinity of a black hole, small bodies that approach it will melt as a result of heating from the background accretion of gas from the interstellar medium onto the black hole,” said Siraj. “Once they melt, the small bodies are subject to tidal disruption by the black hole, followed by accretion from the tidally disrupted body onto the black hole.” Loeb added, “Because black holes are intrinsically dark, the radiation that matter emits on its way to the mouth of the black hole is our only way to illuminate this dark environment.”

Jul 18, 2020

28 ‘Cocooned’ Black Holes Found Hiding in Plain Sight

Posted by in category: cosmology

New research re-examining old data showed that 28 objects previously described as distant galaxies or dim black holes are in fact bright, shrouded supermassive black holes.

Jul 17, 2020

For The First Time Ever, Astronomers Have Witnessed a Black Hole ‘Blink’

Posted by in categories: cosmology, materials

Black holes don’t glow — in fact, they’re famous for doing the opposite. But if they’re actively devouring material from the space around them, that material can blaze like a billion X-ray Suns.

And for the first time, astronomers have now seen that blaze mysteriously snuffed out, before gradually returning to brightness.

The supermassive black hole is a beast clocking in at 19 million solar masses, powering a galactic nucleus 275 million light-years away, in a galaxy called 1ES 1927+654.