Blog

Archive for the ‘biological’ category: Page 95

Jun 28, 2022

Feeding ‘Supplements’ to Corals Could One Day Help to Regrow The Great Barrier Reef

Posted by in category: biological

The corals we find in the world’s reefs have their own microbiomes, and scientists are figuring out how to feed them probiotic ‘supplements’ – to try and save them for future generations.

A baby coral begins life as a swimming larva adrift in the ocean. When it is big enough, the larva sinks and secures itself to the seafloor – or, if it’s lucky, a healthy reef. Once settled, it begins to clone itself.

Shallow-water corals, made up of myriad different organisms, are essentially colonies of tiny animals collaborating with a marine algae called zooxanthellae, which feeds the coral and helps produce the calcium carbonate that forms reefs over thousands – or even millions – of years.

Jun 28, 2022

Optical technique sorts nanodiamonds

Posted by in categories: biological, nanotechnology, quantum physics

A method of optically selecting and sorting nanoparticles according to their quantum mechanical properties has been developed by researchers in Japan. The method could prove a crucial tool for manufacturing nanostructures for quantum sensing, biological imaging and quantum information technology ( Sci. Adv. 7 eabd9551).

Scientists have several ways of manipulating and positioning tiny objects without touching them. Optical tweezers, for example, use a highly focused laser beam to generate optical forces that hold and move objects in the beam’s trajectory. However, such tweezers struggle to grasp nanoparticles because these tiny objects are much smaller than the wavelength of the laser light used.

Now, a team led by Hajime Ishihara of Osaka University and Keiji Sasaki at Hokkaido University has developed a way of using light to sort nanodiamonds. These are tiny pieces of semiconductor with very useful optoelectronic properties that derive from bulk diamond as well as certain defects such as nitrogen-vacancy (NV) centres.

Jun 25, 2022

Quantum microphone works even better than a regular one

Posted by in categories: biological, particle physics, quantum physics

View insights.


A quantum microphone can record human speech better than an equivalent classical version, and it could also be adapted for high-resolution biological imaging.

Jun 24, 2022

A new breakthrough in biology allows scientists to grow food without sunlight

Posted by in categories: biological, climatology, solar power, space, sustainability

The researchers also optimized their electrolyzer to produce the highest levels of acetate ever produced in an electrolyzer to date. What’s more, they found that crop plants, including cowpea, tomato, rice, green pea, and tobacco, all have the potential to be grown in the dark using the carbon from acetate. There’s even a possibility that acetate could improve crop yields, though more research is required.

The researchers believe that by reducing the reliance on direct sunlight, artificial photosynthesis could provide an important alternative for food growth in the coming years, as the world adapts to the worst effects of climate change — including droughts, floods, and reduced land availability. “Using artificial photosynthesis approaches to produce food could be a paradigm shift for how we feed people. By increasing the efficiency of food production, less land is needed, lessening the impact agriculture has on the environment. And for agriculture in non-traditional environments, like outer space, the increased energy efficiency could help feed more crew members with less inputs,” Jinkerson explained.

Jun 24, 2022

Secrets of aging revealed in largest study on longevity, aging in reptiles and amphibians

Posted by in categories: biological, life extension

At 190 years old, Jonathan the Seychelles giant tortoise recently made news for being the “oldest living land animal in the world.” Although, anecdotal evidence like this exists that some species of turtles and other ectotherms—or ‘cold-blooded’ animals—live a long time, evidence is spotty and mostly focused on animals living in zoos or a few individuals living in the wild. Now, an international team of 114 scientists, led by Penn State and Northeastern Illinois University, reports the most comprehensive study of aging and longevity to date comprising data collected in the wild from 107 populations of 77 species of reptiles and amphibians worldwide.

Among their many findings, which they report today in the journal Science, the researchers documented for the first time that , crocodilians and salamanders have particularly low aging rates and extended lifespans for their sizes. The team also found that protective phenotypes, such as the hard shells of most turtle species, contribute to slower aging, and in some cases even ‘negligible aging’—or lack of biological aging.

“Anecdotal evidence exists that some reptiles and amphibians age slowly and have long lifespans, but until now no one has actually studied this on a large scale across numerous species in the wild,” said David Miller, senior author and associate professor of wildlife population ecology, Penn State. “If we can understand what allows some animals to age more slowly, we can better understand aging in humans, and we can also inform conservation strategies for reptiles and amphibians, many of which are threatened or endangered.”

Jun 22, 2022

A universal approach to tailoring soft robots

Posted by in categories: 3D printing, biological, robotics/AI

By combining two distinct approaches into an integrated workflow, Singapore University of Technology and Design (SUTD) researchers have developed a novel automated process for designing and fabricating customized soft robots. Their method, published in Advanced Materials Technologies, can be applied to other kinds of soft robots—allowing their mechanical properties to be tailored in an accessible manner.

Though robots are often depicted as stiff, metallic structures, an emerging class of pliable machines known as is rapidly gaining traction. Inspired by the flexible forms of living organisms, soft robots have wide applications in sensing, movement, object grasping and manipulation, among others. Yet, such robots are still mostly fabricated through manual casting techniques—limiting the complexity and geometries that can be achieved.

“Most fabrication approaches are predominantly manual due to a lack of standard tools,” said SUTD Assistant Professor Pablo Valdivia y Alvarado, who led the study. “But 3D printing or additive manufacturing is slowly coming into play as it facilitates repeatability and allows more complex designs—improving quality and performance.”

Jun 22, 2022

Building artificial nerve cells

Posted by in categories: biological, chemistry, computing, space

For the first time, researchers have demonstrated an artificial organic neuron, a nerve cell, that can be integrated with a living plant and an artificial organic synapse. Both the neuron and the synapse are made from printed organic electrochemical transistors.

On connecting to the carnivorous Venus flytrap, the electrical pulses from the artificial nerve cell can cause the plant’s leaves to close, although no fly has entered the trap. Organic semiconductors can conduct both electrons and ions, thus helping mimic the ion-based mechanism of pulse (action potential) generation in plants. In this case, the small electric pulse of less than 0.6 V can induce action potentials in the plant, which in turn causes the leaves to close.

“We chose the Venus flytrap so we could clearly show how we can steer the biological system with the artificial organic system and get them to communicate in the same language,” says Simone Fabiano, associate professor and principal investigator in organic nanoelectronics at the Laboratory of Organic Electronics, Linköping University, Campus Norrköping.

Jun 22, 2022

Complex Dance of Light-Seeking Algae in Light Gradients

Posted by in category: biological

A population of photosynthetic algae has been shown to exhibit a highly nonlinear response to light, forming dynamic structures in light-intensity gradients.

Many photosynthetic microbes move in response to light. For example, the single-celled green alga Chlamydomonas reinhardtii swims toward moderate light to photosynthesize and away from intense light to avoid damage. Two longstanding questions about this light response regard how light-seeking cells move in a light-intensity gradient and whether this motion depends on cell concentration. Now, Aina Ramamonjy and colleagues at the French National Center for Scientific Research (CNRS) and the University of Paris have answered these questions [1]. The results could improve our understanding of how groups of photosynthetic organisms arrange themselves into dynamic patterns to control the amount of light that they receive.

In 1911, the botanist Harold Wager reported a seminal study [2] that launched the field of bioconvection, a collective phenomenon that results in self-organized structures and emergent flow patterns in suspensions of swimming microbes. The overall picture is that dense collections of microbes that are heavier than surrounding water but can swim against gravity self-organize into passively descending, cell-packed plumes flanked by actively ascending, cell-sparse populations.

Jun 21, 2022

Aerobic Respiration Part 3 (Tricarboxylic Acid Cycle/Kreb Cycle/Citric Acid Cycle)

Posted by in categories: biological, chemistry

Tricarboxylic acid cycle/kreb cycle/citric acid cycle.

#citricacidcycle #krebs #biochemistry #biology #Cellular #respiration

Continue reading “Aerobic Respiration Part 3 (Tricarboxylic Acid Cycle/Kreb Cycle/Citric Acid Cycle)” »

Jun 20, 2022

Rapid biosensor development using plant hormone receptors as reprogrammable scaffolds

Posted by in categories: biological, engineering

Biosensors are developed from malleable hormone receptors.

Page 95 of 223First9293949596979899Last