Blog

Archive for the ‘bioengineering’ category: Page 87

Jun 28, 2021

Harvard Scientists Pinpoint ‘Ground Zero’ of Aging in Mouse Embryo Study

Posted by in categories: bioengineering, life extension

In 2016, researchers at the Salk Institute showed that activating certain genes associated with embryonic development could “reprogram” the age of cells and boost the age of mice. Last year, they even managed to use the process to restore vision in old mice.

But the natural “reprogramming” described in the new Harvard study is unlikely to be exactly the same and may be far more comprehensive as it resets cellular age to ground zero, rather than simply reversing it by a few years.

Now that they know when this process happens, the researchers hope they can discover what the actual mechanism is, how similar it is to artificial cellular programming, and whether it can be induced in normal adult cells to rejuvenate them. That’s likely to be a long road, but could eventually lead to major breakthroughs in longevity science.

Jun 26, 2021

CRISPR gene editing breakthrough could treat many more diseases

Posted by in categories: bioengineering, biotech/medical, genetics, nanotechnology, neuroscience

CRISPR gene editing already promises to fight diseases that were once thought unassailable, but techniques so far have required injecting the tools directly into affected cells. That’s not very practical for some conditions. However, there’s just been a breakthrough. NPR reports that researchers have published results showing that you can inject CRISPR-Cas9 into the bloodstream to make edits, opening the door to the use of gene editing for treating many common diseases.

The experimental treatment tackled a rare genetic disease, transthyretin amyloidosis. Scientists injected volunteers with CRISPR-loaded nanoparticles that were absorbed by the patients’ livers, editing a gene in the organ to disable production of a harmful protein. Levels of that protein plunged within weeks of the injection, saving patients from an illness that can rapidly destroy nerves and other tissues in their bodies.

The test involved just six people, and the research team still has to conduct long-term studies to check for possible negative effects. If this method proves viable on a large scale, though, it could be used to treat illnesses where existing CRISPR techniques aren’t practical, ranging from Alzheimer’s to heart disease.

Jun 25, 2021

DNAzymes could outperform protein enzymes for genetic engineering

Posted by in categories: bioengineering, biotech/medical, chemistry, computing, genetics

Move over, gene-editing proteins—there’s a smaller, cheaper, more specific genetic engineering tool on the block: DNAzymes—small DNA molecules that can function like protein enzymes.

Researchers at the University of Illinois Urbana-Champaign have developed a technique that, for the first time, allows DNAzymes to target and cut double-stranded DNA, overcoming a significant limitation of the technology. DNAzymes have been used in biosensing, DNA computing and many other applications. However, when it comes to genetic engineering applications such as gene editing or , they have faced a challenge: DNAzymes have only been able to target sites on single-stranded DNA, while the DNA coding for genes in cells is double-stranded. The researchers published their new technique in the Journal of the American Chemical Society.

“DNAzymes have many advantages, including higher stability, smaller size and lower cost than protein enzymes. These advantages perfectly fit the requirement for genetic engineering tools,” said study leader Yi Lu, a professor of chemistry at Illinois. “No DNAzymes could alter double-stranded DNA until this work. By making that happen, we open the door for DNAzymes to enter the entire world of genetic engineering.”

Jun 25, 2021

Are we ready? Advances in CRISPR means the era of germline gene editing has arrived

Posted by in categories: bioengineering, biotech/medical, ethics

Quick, accurate and easy-to-use, CRISPR-Cas9 has made genomic editing more efficient—but at the same time has made human germline editing much more feasible, erasing many of the ethical barriers erected to prevent scientists from editing the genes of heredity.

“The ethical debate about what is now called human gene editing has gone on for more than 50 years,” writes Dr. John H. Evans, co-director of the Institute for Practical Ethics at the University of California, San Diego. “For nearly that entire time, there has been consensus that a moral divide exists between somatic and human germline editing.”

In an essay published in the Proceedings of the National Academy of Sciences (PNAS), Evans contends that many of the potent bioethical arguments that once made germline editing a verboten concept, have begun to dissolve in the era of CRISPR.

Jun 25, 2021

Groundbreaking ‘superhero’ vaccine based on Olympic athlete DNA could transform society

Posted by in categories: bioengineering, biotech/medical, genetics, neuroscience

STANFORD, Calif. — A groundbreaking “superhero” vaccine inspired by the DNA code of Olympic athletes could help transform society over the next decade, a top genetic scientist claims.

The vaccine would provide lifelong protection against three of the top ten leading causes of death, according to Euan Ashley, professor of medicine and genetics at Stanford University. The so-called “superhero” jab could offer simultaneous, long-term protection against heart disease, stroke, Alzheimer’s disease, and liver disease, thanks to advances in genetic engineering.

This breakthrough treatment would deliver the blueprint of “ideal” cells from men and women whose genes are more disease-resistant than those of the average person, together with an “instruction manual” to help the body “repair, tweak and improve” its own versions. A single dose could lead to a “body-wide genetic upgrade” that would cut the risk of premature death in some adults by as much as 50 percent.

Jun 25, 2021

No lab required: New technology can diagnose infections in minutes

Posted by in categories: bioengineering, biotech/medical, chemistry

I am waiting for tricorders.


The idea of visiting the doctor’s office with symptoms of an illness and leaving with a scientifically confirmed diagnosis is much closer to reality because of new technology developed by researchers at McMaster University.

Engineering, biochemistry and medical researchers from across campus have combined their skills to create a hand-held rapid test for bacterial infections that can produce accurate, reliable results in less than an hour, eliminating the need to send samples to a lab.

Continue reading “No lab required: New technology can diagnose infections in minutes” »

Jun 24, 2021

Researcher introduces new CRISPR 3.0 system for highly efficient gene activation in plants

Posted by in categories: bioengineering, biotech/medical, food

In a study in Nature Plants, Yiping Qi, associate professor of Plant Science at the University of Maryland (UMD), introduces a new and improved CRISPR 3.0 system in plants, focusing on gene activation instead of traditional gene editing. This third generation CRISPR system focuses on multiplexed gene activation, meaning that it can boost the function of multiple genes simultaneously. According to the researchers, this system boasts four to six times the activation capacity of current state-of-the-art CRISPR technology, demonstrating high accuracy and efficiency in up to seven genes at once. While CRISPR is more often known for its gene editing capabilities that can knock out genes that are undesirable, activating genes to gain functionality is essential to creating better plants and crops for the future.

“While my lab has produced systems for simultaneous gene editing [multiplexed editing] before, editing is mostly about generating loss of function to improve the crop,” explains Qi. “But if you think about it, that strategy is finite, because there aren’t endless genes that you can turn off and actually still gain something valuable. Logically, it is a very limited way to engineer and breed better traits, whereas the plant may have already evolved to have different pathways, defense mechanisms, and traits that just need a boost. Through activation, you can really uplift pathways or enhance existing capacity, even achieve a novel function. Instead of shutting things down, you can take advantage of the functionality already there in the genome and enhance what you know is useful.”

In his new paper, Qi and his team validated the CRISPR 3.0 system in rice, tomatoes, and Arabidopsis (the most popular model plant species, commonly known as rockcress). The team showed that it is possible to simultaneously activate many kinds of genes, including faster flowering to speed up the breeding process. But this is just one of the many advantages of multiplexed activation, says Qi.

Jun 22, 2021

Nip, Tuck, CRISPR: Gene Editing Could Give Plastic Surgery a Lift

Posted by in categories: bioengineering, biotech/medical

Circa 2018


CRISPR will realize its potential in plastic and reconstructive surgery only if plastic surgeons gain familiarity with this disruptive technology and become active contributors and leaders in applying CRISPR to their respective areas of expertise.

Jun 22, 2021

Overcoming the Limitations of CRISPR Gene Editing with RNA Editing

Posted by in categories: bioengineering, biotech/medical, genetics

A once forgotten technology, RNA editing has been gaining traction as a treatment for genetic conditions given its key advantages over CRISPR gene editing.

Since CRISPR-Cas9 gene editing was first reported in 2012, its promise of making gene editing faster, cheaper, and easier than ever before led to an explosion in the number of publications referring to this gene editing technology.

An increasing number of research labs and companies are aiming to translate CRISPR gene editing into therapies for genetic diseases. However, further research has unveiled that there are more limitations to using CRISPR-Cas9 to cure diseases than initially expected. For example, the technology has been reported to introduce off-target changes to the DNA, raising concerns about its safety.

Jun 22, 2021

Cleveland Clinic Trial to Test Gene Therapy as Treatment of Sickle Cell Disease

Posted by in categories: bioengineering, biotech/medical, genetics

Novel study designed to correct genetic abnormalities of red blood cells.


Cleveland Clinic researchers are enrolling patients in a clinical trial that aims to work toward a cure for sickle cell disease, by changing the patient’s genetics. Sickle cell disease, a genetic blood disorder, is a painful and debilitating condition for which there are few approved therapies.

The multicenter study will evaluate the safety and effectiveness of a single dose of EDIT-301, an experimental one-time gene editing cell therapy that modifies a patient’s own blood-forming stem cells to correct the mutation responsible for sickle cell disease.

Continue reading “Cleveland Clinic Trial to Test Gene Therapy as Treatment of Sickle Cell Disease” »

Page 87 of 218First8485868788899091Last