Blog

Archive for the ‘bioengineering’ category: Page 63

Aug 27, 2022

Researchers engineer first sustainable chromosome changes in mice

Posted by in categories: bioengineering, biotech/medical, evolution, genetics

This finding “proved” the significance of chromosomal rearrangement, a crucial evolutionary indicator of the emergence of a new species.

Researchers from the Chinese Academy of Sciences (CAS) claim to have found a novel technique for programmable chromosome fusion successfully producing mice with genetic changes “that occur on a million-year evolutionary scale” in the laboratory.

The findings could shed light on how chromosome rearrangements—the tidy packages of organized genes provided in equal numbers by each parent, which align and trade or blend traits to produce offspring—influence evolution, reported Phys.org on Thursday.

Continue reading “Researchers engineer first sustainable chromosome changes in mice” »

Aug 27, 2022

Chinese scientists claim to have engineered the world’s first mouse with fully reprogrammed genes

Posted by in categories: bioengineering, genetics

Researchers from the Chinese Academy of Sciences (CAS) claim to have found a novel technique for programmable chromosome fusion successfully producing mice with genetic changes that…

Aug 27, 2022

Corneas made from pig collagen return sight to 20 people

Posted by in categories: bioengineering, biotech/medical, economics, food

Corneal blindness occurs when the transparent membrane that covers the front of the eye and acts as a lens becomes opaque and prevents the light from reaching the back of the eye, inhibiting vision. It can be solved with a transplant, but experts estimate that 12.7 million people are currently waiting for a cornea donation. These membranes are in short supply: for every 70 that are needed, only one is available. In view of this problem, especially in countries where there are fewer donations of human corneas due to limited infrastructure, a group of Swedish researchers tested corneas made from pig skin collagen in 20 people who needed transplants (all of them Iranian or Indian citizens; 14 of them were blind). After two years, they all showed improvement, and those who were blind could see again. Although more complex clinical trials are still necessary to validate the measure, the first test of this bioengineered corneal tissue has proven to be safe. The results of this pilot study were published in the Nature Biotechnology journal.

There is also a socioeconomic aspect to corneal blindness: one million new cases are diagnosed every year, but according to researchers, most are concentrated in low-and middle-income countries in Asia, Africa and the Middle East – precisely where it is most difficult to obtain a donated human cornea, due to endless “economic, cultural, technological, political and ethical barriers.” Finding an alternative to the human cornea transplant is key, the authors point out, to fighting keratoconus, a disease that weakens and thins the cornea, and which is the reason for most transplants.

In order to find an alternative to donated human cornea, the researchers bioengineered collagen, the main protein in the human cornea, as a raw material. “For an abundant yet sustainable and cost-effective supply of collagen, we used medical-grade collagen sourced from porcine skin, a purified byproduct from the food industry already used in FDA-approved medical devices for glaucoma surgery and as a wound dressing,” they explain in the article. Unlike the human corneas, which must be used in less than two weeks, bioengineered corneas can be stored for up to two years.

Aug 24, 2022

George Church, PhD: Rewriting Genomes to Eradicate Disease and Aging

Posted by in categories: bioengineering, biotech/medical, existential risks, genetics, life extension, robotics/AI

All around smart guy Dr Goerge Church talking about genetic engineering technologies.


George Church, Ph.D. is a professor of genetics at Harvard Medical School and of health sciences and technology at both Harvard and the Massachusetts Institute of Technology. Dr. Church played an instrumental role in the Human Genome Project and is widely recognized as one of the premier scientists in the fields of gene editing technology and synthetic biology.

Continue reading “George Church, PhD: Rewriting Genomes to Eradicate Disease and Aging” »

Aug 21, 2022

3D printing microscale ice structures for advanced manufacturing and biomedical engineering

Posted by in categories: 3D printing, bioengineering, biotech/medical, robotics/AI

Big scientific breakthroughs often require inventions at the smallest scale. Advances in tissue engineering that can replace hearts and lungs will require the fabrication of artificial tissues that allow for the flow of blood through passages that are no thicker than a strand of hair. Similarly, miniature softbotic (soft-robot) devices that physically interact with humans safely and comfortably will demand the manufacture of components with complex networks of small liquid and airflow channels.

Advances in 3D printing are making it possible to produce such tiny structures. But for those applications that require very small, smooth, internal channels in specific complex geometries, challenges remain. 3D printing of these geometries using traditional processes requires the use of support structures that are difficult to remove after printing. Printing these models using layer-based methods at a high resolution takes a long time and compromises geometric accuracy.

Researchers at Carnegie Mellon University have developed a high-speed, reproducible fabrication method that turns the 3D “inside out.” They developed an approach to 3D print ice structures that can be used to create sacrificial templates that later form the conduits and other open features inside fabricated parts.

Aug 20, 2022

Who Gets to Work in the Digital Economy?

Posted by in categories: bioengineering, biotech/medical, business, computing, economics, employment, finance, internet

If the combination of Covid-19 and remote work technologies like Zoom have undercut the role of cities in economic life, what might an even more robust technology like the metaverse do? Will it finally be the big upheaval that obliterates the role of cities and density? To paraphrase Airbnb CEO Brian Chesky: The place to be was Silicon Valley. It feels like now the place to be is the internet.

The simple answer is no, and for a basic reason. Wave after wave of technological innovation — the telegraph, the streetcar, the telephone, the car, the airplane, the internet, and more — have brought predictions of the demise of physical location and the death of cities.


Remote work has become commonplace since the beginning of the Covid-19 pandemic. But the focus on daily remote work arrangements may miss a larger opportunity that the pandemic has unearthed: the possibility of a substantially increased labor pool for digital economy work. To measure interest in digital economy jobs, defined as jobs within the business, finance, art, science, information technology, and architecture and engineering sectors, the authors conducted extensive analyses of job searches on the Bing search engine, which accounts for more than a quarter of all desktop searches in the U.S. They found that, not only did searches for digital economy jobs increase since the beginning of the pandemic, but those searches also became less geographically concentrated. The single biggest societal consequence of the dual trends of corporate acceptance of remote work and people’s increased interest in digital economy jobs is the potential geographic spread of opportunity.

Continue reading “Who Gets to Work in the Digital Economy?” »

Aug 17, 2022

Scientists plan ‘de-extinction’ of Tasmanian tiger

Posted by in categories: bioengineering, biotech/medical, existential risks

The last known thylacine, also called the Tasmanian tiger, died at Australia’s Hobart Zoo in 1936. Now, a team of scientists believe they can resurrect the extinct species within 10 years, using stem cells and gene editing technology.

Aug 16, 2022

Engineering circular ribonucleic acids (circRNAs) for improved protein production

Posted by in categories: bioengineering, biotech/medical

Circular ribonucleic acids (circRNAs) are a promising platform for gene expression studies as a stable and prevalent ribonucleic acid in eukaryotic cells, which arise from back-splicing. In a new report now published in Nature Biotechnology, Robert Chen and a team of interdisciplinary researchers at Stanford University, California, U.S., developed a systematic approach to rapidly assemble and test features affecting protein production based on synthetic circular RNAs. The team maximized translation of the circRNA by optimizing fine elements to implement design principles to improve circular RNA yield by several hundred-fold. The outcomes facilitated an increased translation of the RNA of interest, when compared to messenger RNA (mRNA) levels, to provide durable translation in vivo.

Developing circular RNA (circRNA) in the lab

Therapeutics based on ribonucleic acids span across messenger RNA (mRNA), small interfering RNAs (siRNA) and microRNAs (miRNA) with expansion into modern medicine including small molecules, biologics and cell therapeutics. For example, the lately popular mRNA vaccines can be designed in the lab and developed at a rapid pace to respond to evolving and urgent medical crises. Coding RNAs can be circularized into circRNAs to extend the duration of protein translation, based on RNA molecules that covalently join head-to-tail. Bioengineers have also advanced the synthesis of circular long transcripts into circRNAs. However, the fundamental mechanisms of initiating translation to form circular RNA or messenger RNA differ due to the lack of a 7-methylguanylate (M7G) cap on the circular RNAs. As a result of this, researchers need to thoroughly examine the principles of circular RNA translation to build better therapies and potentially surpass the translational capacities of mRNA.

Aug 14, 2022

MIT researchers discover bacteria’s new antiviral defense system

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, life extension

Specific proteins in prokaryotes detect viruses in unexpectedly direct ways.

Bacteria use a variety of defense strategies to fight off viral infection. STAND ATPases in humans are known to respond to bacterial infections by inducing programmed cell death in infected cells. Scientists predict that many more antiviral weapons will be discovered in the microbial world in the future. Scientists have discovered a new unexplored microbial defense system in bacteria.

Researchers uncovered specific proteins in prokaryotes (bacteria and archaea) that detect viruses in unexpectedly direct ways, recognizing critical parts of the viruses and causing the single-celled organisms to commit suicide to stop the infection within a microbial community, according to a press release published in the official website of the Massachusetts Institute of Technology (MIT) on Thursday.

Continue reading “MIT researchers discover bacteria’s new antiviral defense system” »

Aug 14, 2022

Researchers develop bioengineered cornea that can restore sight to the blind and visually impaired

Posted by in categories: bioengineering, biotech/medical

Thor Balkhed/Linköping University.

Made of collagen protein from pig’s skin, the implant resembles the human cornea and is more than a pipe dream for an estimated number of 12.7 million people around the world who are blind due to their diseased corneas. The implant is a promising alternative to the transplantation of donated human corneas, which are scarce in under-developed and developing countries, where the need for them is greatest.

Page 63 of 218First6061626364656667Last